// Downloaded from from FasterTransformer v5.2.1 // https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h /* * Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "cuda_bf16_wrapper.h" #include "cuda_bf16_fallbacks.cuh" #include using namespace fastertransformer; namespace mmha { //////////////////////////////////////////////////////////////////////////////////////////////////// struct Float8_ { float2 x; float2 y; float2 z; float2 w; }; //////////////////////////////////////////////////////////////////////////////////////////////////// struct Float4_ { float2 x; float2 y; }; //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 struct bf16_4_t { __nv_bfloat162 x; __nv_bfloat162 y; }; //////////////////////////////////////////////////////////////////////////////////////////////////// struct bf16_8_t { __nv_bfloat162 x; __nv_bfloat162 y; __nv_bfloat162 z; __nv_bfloat162 w; }; #endif //////////////////////////////////////////////////////////////////////////////////////////////////// template struct num_elems; template<> struct num_elems { static constexpr int value = 1; }; template<> struct num_elems { static constexpr int value = 2; }; template<> struct num_elems { static constexpr int value = 4; }; template<> struct num_elems { static constexpr int value = 4; }; template<> struct num_elems { static constexpr int value = 8; }; template<> struct num_elems { static constexpr int value = 2; }; template<> struct num_elems { static constexpr int value = 4; }; template<> struct num_elems { static constexpr int value = 8; }; #ifdef ENABLE_BF16 template<> struct num_elems<__nv_bfloat162> { static constexpr int value = 2; }; template<> struct num_elems { static constexpr int value = 4; }; template<> struct num_elems { static constexpr int value = 8; }; #endif //////////////////////////////////////////////////////////////////////////////////////////////////// template struct packed_type; template struct packed_type { using type = T; }; template<> struct packed_type { using type = int16_t; }; template<> struct packed_type { using type = int32_t; }; template<> struct packed_type { using type = int64_t; }; template<> struct packed_type { using type = float2; }; template<> struct packed_type { using type = float4; }; template<> struct packed_type { using type = Float8_; }; //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float add(float a, float b) { return a + b; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 add(float2 a, float2 b) { float2 c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float4 add(float4 a, float4 b) { float4 c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); c.z = add(a.z, b.z); c.w = add(a.w, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) { return a + b; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) { return bf16hadd2(a, b); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) { bf16_4_t c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) { bf16_8_t c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); c.z = add(a.z, b.z); c.w = add(a.w, b.w); return c; } #endif // ENABLE_BF16 //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint16_t add(uint16_t a, uint16_t b) { uint16_t c; asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b)); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint32_t add(uint32_t a, uint32_t b) { uint32_t c; asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b)); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint2 add(uint2 a, uint2 b) { uint2 c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint4 add(uint4 a, uint4 b) { uint4 c; c.x = add(a.x, b.x); c.y = add(a.y, b.y); c.z = add(a.z, b.z); c.w = add(a.w, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint16_t float_to_half(float f) { union { uint32_t u32; uint16_t u16[2]; } tmp; #if 0 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 // Is it better? float zero = 0.f; asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(zero), "f"(f)); #else asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f)); #endif return tmp.u16[0]; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint32_t float2_to_half2(float2 f) { union { uint32_t u32; uint16_t u16[2]; } tmp; #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x)); #else asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x)); asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y)); #endif return tmp.u32; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float half_to_float(uint16_t h) { float f; asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h)); return f; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 half2_to_float2(uint32_t v) { uint16_t lo, hi; asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v)); return make_float2(half_to_float(lo), half_to_float(hi)); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float add(float a, uint16_t b) { return a + half_to_float(b); } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 inline __device__ float add(float a, __nv_bfloat16 b) { return a + __bfloat162float(b); } #endif //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 add(uint32_t a, float2 fb) { float2 fa = half2_to_float2(a); return add(fa, fb); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ add(uint2 a, Float4_ fb) { Float4_ fc; fc.x = add(a.x, fb.x); fc.y = add(a.y, fb.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ add(uint4 a, Float8_ fb) { Float8_ fc; fc.x = add(a.x, fb.x); fc.y = add(a.y, fb.y); fc.z = add(a.z, fb.z); fc.w = add(a.w, fb.w); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint32_t h0_h0(uint16_t a) { uint32_t b; asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a)); return b; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float fma(float a, float b, float c) { return a * b + c; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(float2 a, float2 b, float2 c) { float2 d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(float a, float2 b, float2 c) { float2 d; d.x = fma(a, b.x, c.x); d.y = fma(a, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float4 fma(float4 a, float4 b, float4 c) { float4 d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); d.z = fma(a.z, b.z, c.z); d.w = fma(a.w, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float4 fma(float a, float4 b, float4 c) { float4 d; d.x = fma(a, b.x, c.x); d.y = fma(a, b.y, c.y); d.z = fma(a, b.z, c.z); d.w = fma(a, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c) { Float4_ d; d.x = fma(a, b.x, c.x); d.y = fma(a, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c) { Float8_ d; d.x = fma(a, b.x, c.x); d.y = fma(a, b.y, c.y); d.z = fma(a, b.z, c.z); d.w = fma(a, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 inline __device__ float2 add(__nv_bfloat162 a, float2 fb) { float2 fa = bf1622float2(a); return add(fa, fb); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) { Float4_ fc; fc.x = add(a.x, fb.x); fc.y = add(a.y, fb.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) { Float8_ fc; fc.x = add(a.x, fb.x); fc.y = add(a.y, fb.y); fc.z = add(a.z, fb.z); fc.w = add(a.w, fb.w); return fc; } #endif // ENABLE_BF16 //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) { uint32_t d; asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c)); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c) { return fma(h0_h0(a), b, c); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c) { uint2 d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c) { uint32_t s = h0_h0(a); uint2 d; d.x = fma(s, b.x, c.x); d.y = fma(s, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c) { uint4 d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); d.z = fma(a.z, b.z, c.z); d.w = fma(a.w, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c) { uint32_t s = h0_h0(a); uint4 d; d.x = fma(s, b.x, c.x); d.y = fma(s, b.y, c.y); d.z = fma(s, b.z, c.z); d.w = fma(s, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float fma(uint16_t a, uint16_t b, float fc) { float fa = half_to_float(a); float fb = half_to_float(b); return fa * fb + fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc) { float2 fa = half2_to_float2(a); float2 fb = half2_to_float2(b); return fma(fa, fb, fc); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc) { return fma(h0_h0(a), b, fc); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc) { Float4_ fd; fd.x = fma(a.x, b.x, fc.x); fd.y = fma(a.y, b.y, fc.y); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc) { uint32_t s = h0_h0(a); Float4_ fd; fd.x = fma(s, b.x, fc.x); fd.y = fma(s, b.y, fc.y); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc) { Float8_ fd; fd.x = fma(a.x, b.x, fc.x); fd.y = fma(a.y, b.y, fc.y); fd.z = fma(a.z, b.z, fc.z); fd.w = fma(a.w, b.w, fc.w); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc) { uint32_t s = h0_h0(a); Float8_ fd; fd.x = fma(s, b.x, fc.x); fd.y = fma(s, b.y, fc.y); fd.z = fma(s, b.z, fc.z); fd.w = fma(s, b.w, fc.w); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) { return bf16hfma2(a, b, c); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c) { return bf16hfma2(bf162bf162(a), b, c); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) { bf16_4_t d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) { __nv_bfloat162 s = bf162bf162(a); bf16_4_t d; d.x = fma(s, b.x, c.x); d.y = fma(s, b.y, c.y); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) { bf16_8_t d; d.x = fma(a.x, b.x, c.x); d.y = fma(a.y, b.y, c.y); d.z = fma(a.z, b.z, c.z); d.w = fma(a.w, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) { __nv_bfloat162 s = bf162bf162(a); bf16_8_t d; d.x = fma(s, b.x, c.x); d.y = fma(s, b.y, c.y); d.z = fma(s, b.z, c.z); d.w = fma(s, b.w, c.w); return d; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) { return __bfloat162float(a) * __bfloat162float(b) + fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) { float2 fa = bf1622float2(a); float2 fb = bf1622float2(b); return fma(fa, fb, fc); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) { return fma(bf162bf162(a), b, fc); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) { Float4_ fd; fd.x = fma(a.x, b.x, fc.x); fd.y = fma(a.y, b.y, fc.y); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) { __nv_bfloat162 s = bf162bf162(a); Float4_ fd; fd.x = fma(s, b.x, fc.x); fd.y = fma(s, b.y, fc.y); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) { Float8_ fd; fd.x = fma(a.x, b.x, fc.x); fd.y = fma(a.y, b.y, fc.y); fd.z = fma(a.z, b.z, fc.z); fd.w = fma(a.w, b.w, fc.w); return fd; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) { __nv_bfloat162 s = bf162bf162(a); Float8_ fd; fd.x = fma(s, b.x, fc.x); fd.y = fma(s, b.y, fc.y); fd.z = fma(s, b.z, fc.z); fd.w = fma(s, b.w, fc.w); return fd; } #endif // ENABLE_BF16 //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ Acc mul(A a, B b) { return a * b; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float mul(float a, float b) { return a * b; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(float2 a, float2 b) { float2 c; c.x = a.x * b.x; c.y = a.y * b.y; return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(float a, float2 b) { float2 c; c.x = a * b.x; c.y = a * b.y; return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float4 mul(float4 a, float4 b) { float4 c; c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; c.w = a.w * b.w; return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float4 mul(float a, float4 b) { float4 c; c.x = a * b.x; c.y = a * b.y; c.z = a * b.z; c.w = a * b.w; return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float8_ mul(float a, Float8_ b) { Float8_ c; c.x = make_float2(a * b.x.x, a * b.x.y); c.y = make_float2(a * b.y.x, a * b.y.y); c.z = make_float2(a * b.z.x, a * b.z.y); c.w = make_float2(a * b.w.x, a * b.w.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint16_t mul(uint16_t a, uint16_t b) { uint16_t c; asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b)); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint32_t mul(uint32_t a, uint32_t b) { uint32_t c; asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b)); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint32_t mul(uint16_t a, uint32_t b) { return mul(h0_h0(a), b); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint2 mul(uint2 a, uint2 b) { uint2 c; c.x = mul(a.x, b.x); c.y = mul(a.y, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint2 mul(uint16_t a, uint2 b) { uint32_t s = h0_h0(a); uint2 c; c.x = mul(s, b.x); c.y = mul(s, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint4 mul(uint4 a, uint4 b) { uint4 c; c.x = mul(a.x, b.x); c.y = mul(a.y, b.y); c.z = mul(a.z, b.z); c.w = mul(a.w, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ uint4 mul(uint16_t a, uint4 b) { uint32_t s = h0_h0(a); uint4 c; c.x = mul(s, b.x); c.y = mul(s, b.y); c.z = mul(s, b.z); c.w = mul(s, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float mul(uint16_t a, uint16_t b) { float fa = half_to_float(a); float fb = half_to_float(b); return fa * fb; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float mul(uint16_t a, float b) { return half_to_float(a) * b; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(uint32_t a, uint32_t b) { float2 fa = half2_to_float2(a); float2 fb = half2_to_float2(b); return mul(fa, fb); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(uint16_t a, uint32_t b) { return mul(h0_h0(a), b); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float4_ mul(uint2 a, uint2 b) { Float4_ fc; fc.x = mul(a.x, b.x); fc.y = mul(a.y, b.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float4_ mul(uint16_t a, uint2 b) { uint32_t s = h0_h0(a); Float4_ fc; fc.x = mul(s, b.x); fc.y = mul(s, b.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float8_ mul(uint4 a, uint4 b) { Float8_ fc; fc.x = mul(a.x, b.x); fc.y = mul(a.y, b.y); fc.z = mul(a.z, b.z); fc.w = mul(a.w, b.w); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float8_ mul(uint16_t a, uint4 b) { uint32_t s = h0_h0(a); Float8_ fc; fc.x = mul(s, b.x); fc.y = mul(s, b.y); fc.z = mul(s, b.z); fc.w = mul(s, b.w); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 template<> inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) { #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 return __hmul(a, b); #else return bf16hmul(a, b); #endif } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) { return bf16hmul2(a, b); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) { return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) { bf16_4_t c; c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) { __nv_bfloat162 s = bf162bf162(a); bf16_4_t c; c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x); c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) { bf16_8_t c; c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z); c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) { __nv_bfloat162 s = bf162bf162(a); bf16_8_t c; c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x); c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y); c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z); c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w); return c; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) { float fa = (float)a; float fb = (float)b; return fa * fb; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float mul(__nv_bfloat16 a, float b) { return __bfloat162float(a) * b; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) { float2 fa = bf1622float2(a); float2 fb = bf1622float2(b); return mul(fa, fb); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) { return mul(bf162bf162(a), b); } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) { Float4_ fc; fc.x = mul(a.x, b.x); fc.y = mul(a.y, b.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) { __nv_bfloat162 s = bf162bf162(a); Float4_ fc; fc.x = mul(s, b.x); fc.y = mul(s, b.y); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) { Float8_ fc; fc.x = mul(a.x, b.x); fc.y = mul(a.y, b.y); fc.z = mul(a.z, b.z); fc.w = mul(a.w, b.w); return fc; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<> inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) { __nv_bfloat162 s = bf162bf162(a); Float8_ fc; fc.x = mul(s, b.x); fc.y = mul(s, b.y); fc.z = mul(s, b.z); fc.w = mul(s, b.w); return fc; } #endif // ENABLE_BF16 //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(float v) { return v; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(float2 v) { return v.x + v.y; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(float4 v) { return v.x + v.y + v.z + v.w; } //////////////////////////////////////////////////////////////////////////////////////////////////// #ifdef ENABLE_BF16 inline __device__ float sum(__nv_bfloat162 v) { float2 vf = bf1622float2(v); return vf.x + vf.y; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(bf16_4_t v) { return sum(v.x) + sum(v.y); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(bf16_8_t v) { return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w); } #endif // ENABLE_BF16 //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(uint16_t v) { return half_to_float(v); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(uint32_t v) { float2 tmp = half2_to_float2(v); return tmp.x + tmp.y; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(uint2 v) { uint32_t c = add(v.x, v.y); return sum(c); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(uint4 v) { #if 1 uint32_t c = add(v.x, v.y); c = add(c, v.z); c = add(c, v.w); #else uint32_t c = add(v.x, v.y); uint32_t d = add(v.z, v.w); c = add(c, d); #endif return sum(c); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(Float4_ v) { return v.x.x + v.x.y + v.y.x + v.y.y; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float sum(Float8_ v) { return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y; } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ float dot(T a, T b) { return sum(mul(a, b)); } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ float dot(T a, T b) { return sum(mul(a, b)); } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ void zero(uint16_t& dst) { dst = uint16_t(0); } //////////////////////////////////////////////////////////////////////////////////////////////////// template inline __device__ void zero(T& dst) { constexpr int WORDS = sizeof(T) / 4; union { T raw; uint32_t words[WORDS]; } tmp; #pragma unroll for (int ii = 0; ii < WORDS; ++ii) { tmp.words[ii] = 0u; } dst = tmp.raw; } //////////////////////////////////////////////////////////////////////////////////////////////////// inline __device__ float2 rotary_embedding_coefficient(const int zid, const int rot_embed_dim, const int t_step, const float base) { const float pos_idx_inv_freq = t_step / pow(base, zid / (float)rot_embed_dim); return {cos(pos_idx_inv_freq), sin(pos_idx_inv_freq)}; } inline __device__ float2 rotary_embedding_transform(const float2 v, const float2 coef) { float2 rot_v; rot_v.x = coef.x * v.x - coef.y * v.y; rot_v.y = coef.x * v.y + coef.y * v.x; return rot_v; } inline __device__ uint32_t rotary_embedding_transform(const uint32_t v, const float2 coef) { float2 fv = half2_to_float2(v); float2 rot_fv = rotary_embedding_transform(fv, coef); return float2_to_half2(rot_fv); } #ifdef ENABLE_BF16 inline __device__ __nv_bfloat162 rotary_embedding_transform(const __nv_bfloat162 v, const float2 coef) { float2 fv = bf1622float2(v); float2 rot_fv = rotary_embedding_transform(fv, coef); return __floats2bfloat162_rn(rot_fv.x, rot_fv.y); } #endif inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float base=10000.0f) { return; } inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float base=10000.0f) { return; } inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } Float4_& q_ = *reinterpret_cast(&q); const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q_.x = rotary_embedding_transform(q_.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q_.y = rotary_embedding_transform(q_.y, coef1); } inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } Float4_& q_ = *reinterpret_cast(&q); Float4_& k_ = *reinterpret_cast(&k); const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q_.x = rotary_embedding_transform(q_.x, coef0); k_.x = rotary_embedding_transform(k_.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q_.y = rotary_embedding_transform(q_.y, coef1); k_.y = rotary_embedding_transform(k_.y, coef1); } inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); } inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); } inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); q.z = rotary_embedding_transform(q.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); q.w = rotary_embedding_transform(q.w, coef3); } inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); q.z = rotary_embedding_transform(q.z, coef2); k.z = rotary_embedding_transform(k.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); q.w = rotary_embedding_transform(q.w, coef3); k.w = rotary_embedding_transform(k.w, coef3); } #ifdef ENABLE_BF16 inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); } inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); } inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); q.z = rotary_embedding_transform(q.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); q.w = rotary_embedding_transform(q.w, coef3); } inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); q.z = rotary_embedding_transform(q.z, coef2); k.z = rotary_embedding_transform(k.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); q.w = rotary_embedding_transform(q.w, coef3); k.w = rotary_embedding_transform(k.w, coef3); } #endif // ENABLE_BF16 template inline __device__ float2 rotary_embedding_coefficient(const int zid, const int t_step, const T* rotary_cos, const T* rotary_sin) { // zid is the index of the dimension (0, 2, 4, ..., rotary_dim). // rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2. return {float(rotary_cos[zid / 2]), float(rotary_sin[zid / 2])}; } // fp16 is special because we use uint16_t for reading the data, for backward compatibility. template <> inline __device__ float2 rotary_embedding_coefficient(const int zid, const int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { // zid is the index of the dimension (0, 2, 4, ..., rotary_dim). // rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2. return {float(reinterpret_cast(rotary_cos)[zid / 2]), float(reinterpret_cast(rotary_sin)[zid / 2])}; } inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { return; } inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { return; } inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } Float4_& q_ = *reinterpret_cast(&q); const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q_.x = rotary_embedding_transform(q_.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q_.y = rotary_embedding_transform(q_.y, coef1); } inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } Float4_& q_ = *reinterpret_cast(&q); Float4_& k_ = *reinterpret_cast(&k); const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q_.x = rotary_embedding_transform(q_.x, coef0); k_.x = rotary_embedding_transform(k_.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q_.y = rotary_embedding_transform(q_.y, coef1); k_.y = rotary_embedding_transform(k_.y, coef1); } inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); } inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); } inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); q.z = rotary_embedding_transform(q.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); q.w = rotary_embedding_transform(q.w, coef3); } inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); q.z = rotary_embedding_transform(q.z, coef2); k.z = rotary_embedding_transform(k.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); q.w = rotary_embedding_transform(q.w, coef3); k.w = rotary_embedding_transform(k.w, coef3); } #ifdef ENABLE_BF16 inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); } inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (2 * tid >= rot_embed_dim) { return; } const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); q = rotary_embedding_transform(q, coef); k = rotary_embedding_transform(k, coef); } inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); } inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (4 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); } inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); q.z = rotary_embedding_transform(q.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); q.w = rotary_embedding_transform(q.w, coef3); } inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) { if (8 * tid >= rot_embed_dim) { return; } const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); q.x = rotary_embedding_transform(q.x, coef0); k.x = rotary_embedding_transform(k.x, coef0); const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); q.y = rotary_embedding_transform(q.y, coef1); k.y = rotary_embedding_transform(k.y, coef1); const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); q.z = rotary_embedding_transform(q.z, coef2); k.z = rotary_embedding_transform(k.z, coef2); const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); q.w = rotary_embedding_transform(q.w, coef3); k.w = rotary_embedding_transform(k.w, coef3); } #endif // ENABLE_BF16 template __device__ __inline__ void vec_from_smem_transpose(Vec_T& vec, T* smem, int transpose_idx, int smem_pitch); template<> __device__ __inline__ void vec_from_smem_transpose(float& vec, float* smem, int transpose_idx, int smem_pitch) { return; } template<> __device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; uint16_t u16[2]; } tmp; tmp.u16[0] = smem[transpose_idx]; tmp.u16[1] = smem[smem_pitch + transpose_idx]; vec = tmp.u32; } template<> __device__ __inline__ void vec_from_smem_transpose(uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; uint16_t u16[2]; } tmp_1, tmp_2; tmp_1.u32 = *reinterpret_cast(&smem[transpose_idx]); tmp_2.u32 = *reinterpret_cast(&smem[smem_pitch + transpose_idx]); union { uint2 u32x2; uint16_t u16[4]; } tmp_3; tmp_3.u16[0] = tmp_1.u16[0]; tmp_3.u16[1] = tmp_2.u16[0]; tmp_3.u16[2] = tmp_1.u16[1]; tmp_3.u16[3] = tmp_2.u16[1]; vec = tmp_3.u32x2; } template<> __device__ __inline__ void vec_from_smem_transpose(uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint64_t u64; uint16_t u16[4]; } tmp_1, tmp_2; tmp_1.u64 = *reinterpret_cast(&smem[transpose_idx]); tmp_2.u64 = *reinterpret_cast(&smem[smem_pitch + transpose_idx]); union { uint4 u32x4; uint16_t u16[8]; } tmp_3; tmp_3.u16[0] = tmp_1.u16[0]; tmp_3.u16[1] = tmp_2.u16[0]; tmp_3.u16[2] = tmp_1.u16[1]; tmp_3.u16[3] = tmp_2.u16[1]; tmp_3.u16[4] = tmp_1.u16[2]; tmp_3.u16[5] = tmp_2.u16[2]; tmp_3.u16[6] = tmp_1.u16[3]; tmp_3.u16[7] = tmp_2.u16[3]; vec = tmp_3.u32x4; } #ifdef ENABLE_BF16 template<> __device__ __inline__ void vec_from_smem_transpose(bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; __nv_bfloat16 bf16[2]; } tmp_1, tmp_2; tmp_1.u32 = *reinterpret_cast(&smem[transpose_idx]); tmp_2.u32 = *reinterpret_cast(&smem[smem_pitch + transpose_idx]); vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]}; vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]}; } template<> __device__ __inline__ void vec_from_smem_transpose(bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { union { uint64_t u64; __nv_bfloat16 bf16[4]; } tmp_1, tmp_2; tmp_1.u64 = *reinterpret_cast(&smem[transpose_idx]); tmp_2.u64 = *reinterpret_cast(&smem[smem_pitch + transpose_idx]); vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]}; vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]}; vec.z = __nv_bfloat162{tmp_1.bf16[2], tmp_2.bf16[2]}; vec.w = __nv_bfloat162{tmp_1.bf16[3], tmp_2.bf16[3]}; } #endif // ENABLE_BF16 template<> __device__ __inline__ void vec_from_smem_transpose(float4& vec, float* smem, int transpose_idx, int smem_pitch) { vec.x = smem[transpose_idx]; vec.z = smem[transpose_idx + 1]; vec.y = smem[smem_pitch + transpose_idx]; vec.w = smem[smem_pitch + transpose_idx + 1]; } template<> __device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, half* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; half u16[2]; } tmp; tmp.u16[0] = smem[transpose_idx]; tmp.u16[1] = smem[smem_pitch + transpose_idx]; vec = tmp.u32; } #ifdef ENABLE_BF16 template<> __device__ __inline__ void vec_from_smem_transpose(__nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { vec.x = smem[transpose_idx]; vec.y = smem[smem_pitch + transpose_idx]; } #endif template<> __device__ __inline__ void vec_from_smem_transpose(float2& vec, float* smem, int transpose_idx, int smem_pitch) { vec.x = smem[transpose_idx]; vec.y = smem[smem_pitch + transpose_idx]; } template __device__ __inline__ void write_smem_transpose(const Vec_T& vec, T* smem, int transpose_idx, int smem_pitch); template<> __device__ __inline__ void write_smem_transpose(const float& vec, float* smem, int transpose_idx, int smem_pitch) { return; } template<> __device__ __inline__ void write_smem_transpose(const uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint64_t u64; uint16_t u16[4]; } tmp_1, tmp_2; union { uint4 u32x4; uint16_t u16[8]; } tmp_3; tmp_3.u32x4 = vec; tmp_1.u16[0] = tmp_3.u16[0]; tmp_2.u16[0] = tmp_3.u16[1]; tmp_1.u16[1] = tmp_3.u16[2]; tmp_2.u16[1] = tmp_3.u16[3]; tmp_1.u16[2] = tmp_3.u16[4]; tmp_2.u16[2] = tmp_3.u16[5]; tmp_1.u16[3] = tmp_3.u16[6]; tmp_2.u16[3] = tmp_3.u16[7]; *reinterpret_cast(&smem[transpose_idx]) = tmp_1.u64; *reinterpret_cast(&smem[smem_pitch + transpose_idx]) = tmp_2.u64; } template<> __device__ __inline__ void write_smem_transpose(const uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; uint16_t u16[2]; } tmp_1, tmp_2; union { uint2 u32x2; uint16_t u16[4]; } tmp_3; tmp_3.u32x2 = vec; tmp_1.u16[0] = tmp_3.u16[0]; tmp_2.u16[0] = tmp_3.u16[1]; tmp_1.u16[1] = tmp_3.u16[2]; tmp_2.u16[1] = tmp_3.u16[3]; *reinterpret_cast(&smem[transpose_idx]) = tmp_1.u32; *reinterpret_cast(&smem[smem_pitch + transpose_idx]) = tmp_2.u32; } template<> __device__ __inline__ void write_smem_transpose(const uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; uint16_t u16[2]; } tmp; tmp.u32 = vec; smem[transpose_idx] = tmp.u16[0]; smem[smem_pitch + transpose_idx] = tmp.u16[1]; } template<> __device__ __inline__ void write_smem_transpose(const float4& vec, float* smem, int transpose_idx, int smem_pitch) { smem[transpose_idx] = vec.x; smem[transpose_idx + 1] = vec.z; smem[smem_pitch + transpose_idx] = vec.y; smem[smem_pitch + transpose_idx + 1] = vec.w; } template<> __device__ __inline__ void write_smem_transpose(const uint32_t& vec, half* smem, int transpose_idx, int smem_pitch) { union { uint32_t u32; half u16[2]; } tmp; tmp.u32 = vec; smem[transpose_idx] = tmp.u16[0]; smem[smem_pitch + transpose_idx] = tmp.u16[1]; } #ifdef ENABLE_BF16 template<> __device__ __inline__ void write_smem_transpose(const __nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { smem[transpose_idx] = vec.x; smem[smem_pitch + transpose_idx] = vec.y; } template<> __device__ __inline__ void write_smem_transpose(const bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { write_smem_transpose(reinterpret_cast(vec), reinterpret_cast(smem), transpose_idx, smem_pitch); } template<> __device__ __inline__ void write_smem_transpose(const bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) { write_smem_transpose(reinterpret_cast(vec), reinterpret_cast(smem), transpose_idx, smem_pitch); } #endif template<> __device__ __inline__ void write_smem_transpose(const float2& vec, float* smem, int transpose_idx, int smem_pitch) { smem[transpose_idx] = vec.x; smem[smem_pitch + transpose_idx] = vec.y; } } // namespace mmha