# Copyright (c) 2023, Tri Dao. import math import json import re from pathlib import Path from collections import OrderedDict import torch import torch.nn.functional as F from einops import rearrange from transformers import GPT2Config, AutoConfig, PretrainedConfig def remap_state_dict_hf_btlm(state_dict, config): # Word embedding and position embedding def key_mapping_pos_emb(key): return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key) if "transformer.wpe.weight" in state_dict: state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop("transformer.wte.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] # LayerNorm def key_mapping_ln(key): key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key) key = re.sub(r"^transformer.h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP for d in range(config.num_hidden_layers): W1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.weight") W3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.weight") state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = torch.cat([W1.t(), W3.t()], dim=0) b1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.bias") b3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.bias") state_dict[f"transformer.layers.{d}.mlp.fc1.bias"] = torch.cat([b1, b3], dim=0) W2 = state_dict.pop(f"transformer.h.{d}.mlp.c_proj.weight") state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t() def key_mapping_mlp(key): key = re.sub(r"^transformer.h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for d in range(config.num_hidden_layers): Wqkv = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight") state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t() Wout = state_dict.pop(f"transformer.h.{d}.attn.c_proj.weight") state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t() state_dict.pop(f"transformer.relative_pe.slopes") # We don't store the Alibi slopes def key_mapping_attn(key): key = re.sub(r"^transformer.h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key) key = re.sub( r"^transformer.h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key ) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def btlm_config_to_gpt2_config(btlm_config: PretrainedConfig) -> GPT2Config: return GPT2Config( vocab_size=btlm_config.vocab_size, n_positions=0 if btlm_config.position_embedding_type == "alibi" else btlm_config.n_positions, n_embd=btlm_config.hidden_size, n_layer=btlm_config.num_hidden_layers, n_head=btlm_config.num_attention_heads, n_inner=btlm_config.n_inner, activation_function=btlm_config.activation_function, resid_pdrop=btlm_config.resid_pdrop, embd_pdrop=btlm_config.embd_pdrop, attn_pdrop=btlm_config.attn_pdrop, layer_norm_epsilon=btlm_config.layer_norm_epsilon, initializer_range=btlm_config.initializer_range, bos_token_id=btlm_config.bos_token_id, eos_token_id=btlm_config.eos_token_id, # These are new arguments not in the original GPT2Config use_alibi=btlm_config.position_embedding_type == "alibi", use_flash_attn=btlm_config.position_embedding_type == "alibi", # Alibi code path requires flash_attn mup_width_scale=btlm_config.mup_width_scale, mup_embeddings_multiplier=btlm_config.mup_embeddings_scale, mup_output_multiplier=btlm_config.mup_output_alpha, mup_scale_qk_dot_by_d=btlm_config.mup_scale_qk_dot_by_d, mlp_multiple_of=1, )