/* coding=utf-8 * Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "scaled_masked_softmax.h" #include "type_shim.h" namespace multihead_attn { namespace fused_softmax { namespace scaled_masked_softmax { int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches, int attn_heads){ return get_batch_per_block(query_seq_len, key_seq_len, batches, attn_heads); } torch::Tensor fwd_cuda( torch::Tensor const& input, torch::Tensor const& mask, float scale_factor) { // input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len] const int batches = input.size(0); const int pad_batches = mask.size(0); const int attn_heads = input.size(1); const int query_seq_len = input.size(2); const int key_seq_len = input.size(3); TORCH_INTERNAL_ASSERT(key_seq_len <= 8192); TORCH_INTERNAL_ASSERT(query_seq_len > 1); TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches); TORCH_INTERNAL_ASSERT(mask.size(1) == 1); TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len); TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len); // Output auto act_options = input.options().requires_grad(false); torch::Tensor softmax_results = torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options); // Softmax Intermediate Result Ptr void* input_ptr = static_cast(input.data_ptr()); void* mask_ptr = static_cast(mask.data_ptr()); void* softmax_results_ptr = static_cast(softmax_results.data_ptr()); DISPATCH_HALF_AND_BFLOAT( input.scalar_type(), "dispatch_scaled_masked_softmax_forward", dispatch_scaled_masked_softmax_forward( reinterpret_cast(softmax_results_ptr), reinterpret_cast(input_ptr), reinterpret_cast(mask_ptr), scale_factor, query_seq_len, key_seq_len, batches, attn_heads, pad_batches ); ); return softmax_results; } torch::Tensor bwd_cuda( torch::Tensor const& output_grads_, torch::Tensor const& softmax_results_, float scale_factor) { auto output_grads = output_grads_.contiguous(); auto softmax_results = softmax_results_.contiguous(); //output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len] const int batches = output_grads.size(0); const int attn_heads = output_grads.size(1); const int query_seq_len = output_grads.size(2); const int key_seq_len = output_grads.size(3); auto act_options = output_grads.options().requires_grad(false); torch::Tensor input_grads = torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options); void* input_grads_ptr = static_cast(input_grads.data_ptr()); void* output_grads_ptr = static_cast(output_grads.data_ptr()); //Softmax Grad DISPATCH_HALF_AND_BFLOAT( output_grads_.scalar_type(), "dispatch_scaled_masked_softmax_backward", dispatch_scaled_masked_softmax_backward( reinterpret_cast(input_grads_ptr), reinterpret_cast(output_grads_ptr), reinterpret_cast(softmax_results.data_ptr()), scale_factor, query_seq_len, key_seq_len, batches, attn_heads ); ); return input_grads; } } } }