# Run test with: # torchrun --no_python --nproc_per_node=2 pytest -q -s tests/losses/test_cross_entropy_parallel.py import math import pytest import torch from apex.transformer import parallel_state, tensor_parallel from flash_attn.losses.cross_entropy import CrossEntropyLoss is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 @pytest.mark.parametrize( "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []) ) # @pytest.mark.parametrize("dtype", [torch.float16]) @pytest.mark.parametrize("precompute_lse", [False, True]) # @pytest.mark.parametrize("precompute_lse", [False]) @pytest.mark.parametrize("inplace_backward", [False, True]) # @pytest.mark.parametrize("inplace_backward", [False]) # @pytest.mark.parametrize("lse_square_scale", [0.0, 1e-2]) @pytest.mark.parametrize("lse_square_scale", [1e-2]) @pytest.mark.parametrize("logit_scale", [1.0, 0.7]) # @pytest.mark.parametrize("logit_scale", [1.0]) @pytest.mark.parametrize("smoothing", [0.0, 0.9]) # @pytest.mark.parametrize("smoothing", [0.0]) @pytest.mark.parametrize("vocab_size", [50264, 256 * 1024]) # test vocab larger than 64k for split # @pytest.mark.parametrize("vocab_size", [50264]) # test vocab larger than 64k for split # @pytest.mark.parametrize("world_size", [1, 2]) @pytest.mark.parametrize("world_size", [2]) def test_cross_entropy_loss_parallel( vocab_size, world_size, smoothing, logit_scale, lse_square_scale, inplace_backward, precompute_lse, dtype, ): if precompute_lse and (logit_scale != 1.0 or smoothing != 0.0): pytest.skip("precompute_lse only works with logit_scale=1.0 and smoothing=0.0") assert vocab_size % world_size == 0 rtol, atol = ( (1e-5, 2e-5) if dtype == torch.float32 else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3)) ) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl", init_method="env://") partition_vocab_size = vocab_size // world_size device = f"cuda:{torch.distributed.get_rank()}" assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = ( torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10 ).requires_grad_() x = ( tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt) .detach() .clone() .requires_grad_() ) y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction="none") model = CrossEntropyLoss( label_smoothing=smoothing, logit_scale=logit_scale, reduction="none", lse_square_scale=lse_square_scale, inplace_backward=inplace_backward, process_group=parallel_state.get_tensor_model_parallel_group(), ) if precompute_lse: with torch.no_grad(): lse = torch.logsumexp(x.float(), dim=-1) else: lse = None out = model(x, y, precomputed_lse=lse) out_pt = model_pt(x_pt.float() * logit_scale, y) if lse_square_scale > 0.0: lse_pt = torch.logsumexp(x_pt.float() * logit_scale, dim=-1) out_pt += lse_square_scale * lse_pt.square() out_pt.masked_fill_(y == -100, 0.0) assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose( x.grad, x_pt.grad[:, (rank * partition_vocab_size) : (rank + 1) * partition_vocab_size], rtol=rtol, atol=atol, ) parallel_state.destroy_model_parallel()