# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py import math import torch import torch.nn.functional as F import pytest from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.losses.cross_entropy import CrossEntropyLoss is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('inplace_backward', [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize('smoothing', [0.0, 0.9]) # @pytest.mark.parametrize('smoothing', [0.9]) @pytest.mark.parametrize('vocab_size', [50264]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) def test_cross_entropy_loss_apex(vocab_size, world_size, smoothing, inplace_backward, dtype): assert vocab_size % world_size == 0 rtol, atol = ((1e-5, 1e-6) if dtype == torch.float32 else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') partition_vocab_size = vocab_size // world_size device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = (torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10).requires_grad_() x = tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt).detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction='none') model = CrossEntropyLoss(label_smoothing=smoothing, reduction='none', inplace_backward=inplace_backward) out = model(x, y, process_group=parallel_state.get_tensor_model_parallel_group()) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad[:, (rank * partition_vocab_size):(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol) parallel_state.destroy_model_parallel()