/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include "cute/tensor.hpp" #include #include #include #include #include #include "cutlass/pipeline/pipeline.hpp" #include "flash.h" #include "utils.h" #include "softmax.h" #include "tile_scheduler.hpp" #include "mainloop_fwd_sm90_tma_gmma_ws.hpp" #include "epilogue_fwd_sm90_tma.hpp" namespace flash { using namespace cute; template __global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1) compute_attn_ws(CUTE_GRID_CONSTANT typename CollectiveMainloopFwd::Params const mainloop_params, CUTE_GRID_CONSTANT typename CollectiveEpilogueFwd::Params const epilogue_params, CUTE_GRID_CONSTANT typename TileScheduler::Params const scheduler_params, Seqlen_traits seqlen_traits_q, Seqlen_traits seqlen_traits_k ) { using Element = typename Ktraits::Element; using ElementAccum = typename Ktraits::ElementAccum; using SoftType = ElementAccum; using TileShape_MNK = typename Ktraits::TileShape_MNK; using ClusterShape = typename Ktraits::ClusterShape_MNK; static_assert(Ktraits::Is_WS); static constexpr bool Is_WS = Ktraits::Is_WS; static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{}); static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup; static constexpr int kBlockM = Ktraits::kBlockM; // static constexpr int kBlockN = Ktraits::kBlockN; // constexpr int kHeadDim = Ktraits::kHeadDim; using CollectiveMainloop = CollectiveMainloopFwd; using CollectiveEpilogue = CollectiveEpilogueFwd; using MainloopPipeline = typename Ktraits::MainloopPipeline; using PipelineParams = typename MainloopPipeline::Params; using PipelineState = typename MainloopPipeline::PipelineState; extern __shared__ char shared_memory[]; auto &shared_storage = *reinterpret_cast(shared_memory); int const lane_predicate = cute::elect_one_sync(); int const warp_idx = cutlass::canonical_warp_idx_sync(); // Issue Tma Descriptor Prefetch from a single thread if (warp_idx == 0 && lane_predicate) { CollectiveMainloop::prefetch_tma_descriptors(mainloop_params); CollectiveEpilogue::prefetch_tma_descriptors(epilogue_params); } // Obtain warp index int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup; PipelineParams pipeline_params; pipeline_params.transaction_bytes = CollectiveMainloop::TmaTransactionBytesK; int warp_group_idx = cutlass::canonical_warp_group_idx(); pipeline_params.role = warp_group_idx == 0 ? MainloopPipeline::ThreadCategory::Producer : MainloopPipeline::ThreadCategory::Consumer; pipeline_params.is_leader = warp_group_thread_idx == 0; pipeline_params.num_consumers = NumMmaThreads; if (warp_idx == 0 && lane_predicate) { shared_storage.barrier_Q.init(1 /*numThreads*/); shared_storage.barrier_O.init(size(ClusterShape{}) /*numThreads*/); } // We're counting on pipeline_k to call cutlass::arch::fence_barrier_init(); MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{}); MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{}); CollectiveMainloop collective_mainloop; CollectiveEpilogue collective_epilogue; // We need this to guarantee that the Pipeline init is visible to all producers and consumer blocks in the Cluster if constexpr (size(ClusterShape{}) > 1) { cute::cluster_arrive_relaxed(); cute::cluster_wait(); } else { __syncthreads(); } static_assert(Ktraits::kNWarps == 12 || Ktraits::kNWarps == 16); if (warp_group_idx == 0) { // Producer cutlass::arch::warpgroup_reg_dealloc(); // cutlass::arch::warpgroup_reg_dealloc<56>(); int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0); if (warp_idx_in_warpgroup == 0) { // Load Q, K, V PipelineState smem_pipe_write_k = cutlass::make_producer_start_state(); PipelineState smem_pipe_write_v = cutlass::make_producer_start_state(); int work_idx = 0; TileScheduler scheduler(&shared_storage.tile_count_semaphore); for (auto work_tile_info = scheduler.get_initial_work(); work_tile_info.is_valid(scheduler_params); work_tile_info = scheduler.template get_next_work(scheduler_params, work_tile_info)) { auto block_coord = work_tile_info.get_block_coord(scheduler_params); auto [m_block, bidh, bidb] = block_coord; seqlen_traits_q.init(bidb); seqlen_traits_k.init(bidb); if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) { continue; } int n_block_max = collective_mainloop.get_n_block_max( mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k); if (Is_causal && n_block_max <= 0) { scheduler.prefetch_next_work(scheduler_params, work_tile_info); scheduler.broadcast_next_work(work_tile_info); continue; } collective_mainloop.load(mainloop_params, pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v, shared_storage, scheduler, scheduler_params, work_tile_info, block_coord, work_idx, seqlen_traits_q, seqlen_traits_k); ++work_idx; } collective_mainloop.load_tail(pipeline_k, pipeline_v, smem_pipe_write_k, smem_pipe_write_v); } } else { // Consumer cutlass::arch::warpgroup_reg_alloc(); // cutlass::arch::warpgroup_reg_alloc(); TileScheduler scheduler(&shared_storage.tile_count_semaphore); // Initialize matmul objects. typename Ktraits::TiledMma1 tiled_mma1; PipelineState smem_pipe_read_k, smem_pipe_read_v; // We don't need separate variables smem_pipe_release_k and smem_pipe_release_v // (like in Cutlass's gemm) because the read and release pipeline states are always the same. collective_mainloop.mma_init(); scheduler.init_consumer(); int work_idx = 0; CUTLASS_PRAGMA_NO_UNROLL for (auto work_tile_info = scheduler.get_initial_work(); work_tile_info.is_valid(scheduler_params); work_tile_info = scheduler.template get_next_work(scheduler_params, work_tile_info)) { // Attention output (GEMM-II) accumulator. Tensor tOrO = partition_fragment_C(tiled_mma1, select<0, 2>(TileShape_MNK{})); flash::Softmax<2 * (2 * kBlockM / NumMmaThreads)> softmax; auto block_coord = work_tile_info.get_block_coord(scheduler_params); auto [m_block, bidh, bidb] = block_coord; seqlen_traits_q.init(bidb); seqlen_traits_k.init(bidb); if (m_block * kBlockM >= seqlen_traits_q.actual_seq_len) { continue; } int n_block_max = collective_mainloop.get_n_block_max( mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k); if (Is_causal && n_block_max <= 0) { // We exit early and write 0 to gO and -inf to gLSE. collective_epilogue.store_zero(epilogue_params, shared_storage, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q); continue; } collective_mainloop.mma(mainloop_params, pipeline_k, pipeline_v, smem_pipe_read_k, smem_pipe_read_v, tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads, work_idx, m_block, shared_storage, seqlen_traits_q, seqlen_traits_k); // tOrO, softmax, n_block_max, threadIdx.x - NumCopyThreads + (work_idx >> 30), work_idx, shared_storage); collective_epilogue.store(epilogue_params, tOrO, softmax.row_sum, shared_storage, tiled_mma1, threadIdx.x - NumCopyThreads, block_coord, seqlen_traits_q); ++work_idx; } collective_epilogue.store_tail(); } } } // namespace flash