# Install the newest triton version with # pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python" import pickle import math import time import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined from flash_attn import flash_attn_qkvpacked_func from flash_attn_interface import flash_attn_func try: from triton.ops.flash_attention import attention as attention_triton except ImportError: attention_triton = None try: import xformers.ops as xops except ImportError: xops = None try: import cudnn except ImportError: cudnn = None def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): assert mode in ["fwd", "bwd", "fwd_bwd"] f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) def efficiency(flop, time): return (flop / time / 10**12) if not math.isnan(time) else 0.0 def convert_to_cudnn_type(torch_type): if torch_type == torch.float16: return cudnn.data_type.HALF elif torch_type == torch.bfloat16: return cudnn.data_type.BFLOAT16 elif torch_type == torch.float32: return cudnn.data_type.FLOAT elif torch_type == torch.int32: return cudnn.data_type.INT32 elif torch_type == torch.int64: return cudnn.data_type.INT64 else: raise ValueError("Unsupported tensor data type.") def cudnn_spda_setup(q, k, v, causal=False): b, nheads, seqlen_q, headdim = q.shape _, _, seqlen_k, _ = k.shape assert v.shape == (b, nheads, seqlen_k, headdim) assert cudnn is not None, 'CUDNN is not available' q_gpu, k_gpu, v_gpu = q, k, v o_gpu = torch.empty_like(q_gpu) stats_gpu = torch.empty(b, nheads, seqlen_q, 1, dtype=torch.float32, device=q.device) graph = cudnn.pygraph( io_data_type=convert_to_cudnn_type(q.dtype), intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) q = graph.tensor_like(q_gpu.detach()) k = graph.tensor_like(k_gpu.detach()) v = graph.tensor_like(v_gpu.detach()) o, stats = graph.sdpa( name="sdpa", q=q, k=k, v=v, is_inference=False, attn_scale=1.0 / math.sqrt(headdim), use_causal_mask=causal, ) o.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride()) stats.set_output(True).set_data_type(cudnn.data_type.FLOAT) graph.validate() graph.build_operation_graph() graph.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph.check_support() graph.build_plans() variant_pack = { q: q_gpu, k: k_gpu, v: v_gpu, o: o_gpu, stats: stats_gpu, } workspace = torch.empty(graph.get_workspace_size(), device="cuda", dtype=torch.uint8) def run(*args, **kwargs): graph.execute(variant_pack, workspace) return o_gpu return run def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def time_fwd_bwd(func, *args, **kwargs): time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) return time_f[1].mean, time_b[1].mean repeats = 30 device = 'cuda' dtype = torch.float16 # Ideally, seq-len should be divisible by 132 to avoid wave quantization. # However, the existing Triton implementation doesn't support seq-len like 8448. bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192)] # bs_seqlen_vals = [(2, 8192)] causal_vals = [False] # headdim_vals = [64, 128] headdim_vals = [128] dim = 128 dropout_p = 0.0 methods = (["Flash2", "Pytorch", "Flash3"] + (["Triton"] if attention_triton is not None else []) + (["xformers.c"] if xops is not None else []) + (["xformers.f"] if xops is not None else []) + (["cudnn"] if cudnn is not None else [])) time_f = {} time_b = {} time_f_b = {} speed_f = {} speed_b = {} speed_f_b = {} for causal in causal_vals: for headdim in headdim_vals: for batch_size, seqlen in bs_seqlen_vals: config = (causal, headdim, batch_size, seqlen) nheads = dim // headdim qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) f, b = time_fwd_bwd( flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False ) time_f[config, "Flash2"] = f time_b[config, "Flash2"] = b try: qkv = qkv.detach().requires_grad_(True) f, b = time_fwd_bwd( attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False ) res_baseline = attention_pytorch(qkv, dropout_p, causal=causal) except: # Skip if OOM f, b = float('nan'), float('nan') time_f[config, "Pytorch"] = f time_b[config, "Pytorch"] = b q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] f, b = time_fwd_bwd(flash_attn_func, q, k, v, causal=causal, repeats=repeats, verbose=False) res = flash_attn_func(q, k, v, causal=causal) time_f[config, "Flash3"] = f time_b[config, "Flash3"] = b if cudnn is not None: time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark res = benchmark_forward( cudnn_spda_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), causal=causal), repeats=repeats, verbose=False ) f = res[1].mean time_f[config, "cudnn"] = f time_b[config, "cudnn"] = math.inf if attention_triton is not None: q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] # Try both values of sequence_parallel and pick the faster one try: f, b = time_fwd_bwd( attention_triton, q, k, v, causal, headdim**(-0.5), False, repeats=repeats, verbose=False ) except: f, b = float('nan'), float('inf') try: _, b0 = time_fwd_bwd( attention_triton, q, k, v, causal, headdim**(-0.5), True, repeats=repeats, verbose=False ) except: b0 = float('inf') time_f[config, "Triton"] = f time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan') if xops is not None: q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] f, b = time_fwd_bwd( xops.memory_efficient_attention, q, k, v, attn_bias=xops.LowerTriangularMask() if causal else None, op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp) ) time_f[config, "xformers.c"] = f time_b[config, "xformers.c"] = b if xops is not None: q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] f, b = time_fwd_bwd( xops.memory_efficient_attention, q, k, v, attn_bias=xops.LowerTriangularMask() if causal else None, op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp) ) time_f[config, "xformers.f"] = f time_b[config, "xformers.f"] = b print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###") for method in methods: time_f_b[config, method] = time_f[config, method] + time_b[config, method] speed_f[config, method] = efficiency( flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"), time_f[config, method] ) speed_b[config, method] = efficiency( flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"), time_b[config, method] ) speed_f_b[config, method] = efficiency( flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"), time_f_b[config, method] ) #print (time_f[config,method]) print( f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, " f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, " f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s" ) # with open('flash2_attn_time.plk', 'wb') as fp: # pickle.dump((speed_f, speed_b, speed_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)