/****************************************************************************** * Copyright (c) 2023, Tri Dao. ******************************************************************************/ #include #include #include void apply_rotary_cuda(const torch::Tensor x1, const torch::Tensor x2, const torch::Tensor cos, const torch::Tensor sin, torch::Tensor out1, torch::Tensor out2, const bool conj) { auto iter = at::TensorIteratorConfig() .add_output(out1) .add_output(out2) .add_input(x1) .add_input(x2) .add_input(cos) .add_input(sin) .check_all_same_dtype(false) .promote_inputs_to_common_dtype(false) .build(); if (!conj) { AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel", [&] { at::native::gpu_kernel_multiple_outputs( iter, [] GPU_LAMBDA (scalar_t x1, scalar_t x2, scalar_t cos, scalar_t sin) -> thrust::tuple { scalar_t out1 = float(x1) * float(cos) - float(x2) * float(sin); scalar_t out2 = float(x1) * float(sin) + float(x2) * float(cos); return {out1, out2}; }); }); } else { AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel", [&] { at::native::gpu_kernel_multiple_outputs( iter, [] GPU_LAMBDA (scalar_t x1, scalar_t x2, scalar_t cos, scalar_t sin) -> thrust::tuple { scalar_t out1 = float(x1) * float(cos) + float(x2) * float(sin); scalar_t out2 = -float(x1) * float(sin) + float(x2) * float(cos); return {out1, out2}; }); }); } }