/****************************************************************************** * Copyright (c) 2023, Tri Dao. ******************************************************************************/ // Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers. #include #include #include #include #include #include "flash.h" #include "static_switch.h" #define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA") #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") void set_params_fprop(Flash_fwd_params ¶ms, // sizes const size_t b, const size_t seqlen_q, const size_t seqlen_k, const size_t seqlen_q_rounded, const size_t seqlen_k_rounded, const size_t h, const size_t h_k, const size_t d, const size_t d_rounded, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, at::Tensor out, void *cu_seqlens_q_d, void *cu_seqlens_k_d, void *p_d, void *softmax_lse_d, float p_dropout, float softmax_scale, bool is_causal) { // Reset the parameters memset(¶ms, 0, sizeof(params)); params.is_bf16 = q.dtype() == torch::kBFloat16; // Set the pointers and strides. params.q_ptr = q.data_ptr(); params.k_ptr = k.data_ptr(); params.v_ptr = v.data_ptr(); // All stride are in elements, not bytes. params.q_row_stride = q.stride(-3); params.k_row_stride = k.stride(-3); params.v_row_stride = v.stride(-3); params.q_head_stride = q.stride(-2); params.k_head_stride = k.stride(-2); params.v_head_stride = v.stride(-2); params.o_ptr = out.data_ptr(); params.o_row_stride = out.stride(-3); params.o_head_stride = out.stride(-2); if (cu_seqlens_q_d == nullptr) { params.q_batch_stride = q.stride(0); params.k_batch_stride = k.stride(0); params.v_batch_stride = v.stride(0); params.o_batch_stride = out.stride(0); } params.cu_seqlens_q = static_cast(cu_seqlens_q_d); params.cu_seqlens_k = static_cast(cu_seqlens_k_d); // P = softmax(QK^T) params.p_ptr = p_d; // Softmax sum params.softmax_lse_ptr = softmax_lse_d; // Set the dimensions. params.b = b; params.h = h; params.h_k = h_k; params.h_h_k_ratio = h / h_k; params.seqlen_q = seqlen_q; params.seqlen_k = seqlen_k; params.seqlen_q_rounded = seqlen_q_rounded; params.seqlen_k_rounded = seqlen_k_rounded; params.d = d; params.d_rounded = d_rounded; // Set the different scale values. params.scale_softmax = softmax_scale; params.scale_softmax_log2 = softmax_scale * M_LOG2E; // Set this to probability of keeping an element to simplify things. params.p_dropout = 1.f - p_dropout; // Convert p from float to int so we don't have to convert the random uint to float to compare. // [Minor] We want to round down since when we do the comparison we use <= instead of < // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0)); // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0)); params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0)); params.rp_dropout = 1.f / params.p_dropout; params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax; TORCH_CHECK(p_dropout < 1.f); params.is_causal = is_causal; params.is_seqlens_k_cumulative = true; } void set_params_dgrad(Flash_bwd_params ¶ms, // sizes const size_t b, const size_t seqlen_q, const size_t seqlen_k, const size_t seqlen_q_rounded, const size_t seqlen_k_rounded, const size_t h, const size_t h_k, const size_t d, const size_t d_rounded, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, const at::Tensor out, const at::Tensor dout, at::Tensor dq, at::Tensor dk, at::Tensor dv, void *cu_seqlens_q_d, void *cu_seqlens_k_d, void *dq_accum_d, void *dk_accum_d, void *dv_accum_d, void *softmax_lse_d, void *dsoftmax_sum_d, float p_dropout, float softmax_scale, bool is_causal) { set_params_fprop(params, b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded, q, k, v, out, cu_seqlens_q_d, cu_seqlens_k_d, nullptr, softmax_lse_d, p_dropout, softmax_scale, is_causal); // Set the pointers and strides. params.do_ptr = dout.data_ptr(); params.do_row_stride = dout.stride(-3); params.do_head_stride = dout.stride(-2); params.dq_ptr = dq.data_ptr(); params.dk_ptr = dk.data_ptr(); params.dv_ptr = dv.data_ptr(); params.dq_row_stride = dq.stride(-3); params.dk_row_stride = dk.stride(-3); params.dv_row_stride = dv.stride(-3); params.dq_head_stride = dq.stride(-2); params.dk_head_stride = dk.stride(-2); params.dv_head_stride = dv.stride(-2); if (cu_seqlens_q_d == nullptr) { params.do_batch_stride = dout.stride(0); params.dq_batch_stride = dq.stride(0); params.dk_batch_stride = dk.stride(0); params.dv_batch_stride = dv.stride(0); } params.dq_accum_ptr = dq_accum_d; params.dk_accum_ptr = dk_accum_d; params.dv_accum_ptr = dv_accum_d; // Softmax sum params.dsoftmax_sum = dsoftmax_sum_d; } void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) { FP16_SWITCH(!params.is_bf16, [&] { FWD_HEADDIM_SWITCH(params.d, [&] { if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0 run_mha_fwd_(params, stream); } else { run_mha_fwd_splitkv_dispatch(params, stream); } }); }); } // Find the number of splits that maximizes the occupancy. For example, if we have // batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is // better than having 3 splits (efficiency = 0.67). However, we also don't want too many // splits as that would incur more HBM reads/writes. // So we find the best efficiency, then find the smallest number of splits that gets 85% // of the best efficiency. inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) { // If we have enough to almost fill the SMs, then just use 1 split if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; } max_splits = std::min({max_splits, num_SMs, num_n_blocks}); float max_efficiency = 0.f; std::vector efficiency; efficiency.reserve(max_splits); auto ceildiv = [](int a, int b) { return (a + b - 1) / b; }; // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits, // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks // (i.e. it's 11 splits anyway). // So we check if the number of blocks per split is the same as the previous num_splits. auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) { return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1); }; for (int num_splits = 1; num_splits <= max_splits; num_splits++) { if (!is_split_eligible(num_splits)) { efficiency.push_back(0.f); } else { float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs; float eff = n_waves / ceil(n_waves); // printf("num_splits = %d, eff = %f\n", num_splits, eff); if (eff > max_efficiency) { max_efficiency = eff; } efficiency.push_back(eff); } } for (int num_splits = 1; num_splits <= max_splits; num_splits++) { if (!is_split_eligible(num_splits)) { continue; } if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) { // printf("num_splits chosen = %d\n", num_splits); return num_splits; } } return 1; } std::vector mha_fwd(const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &out_, // batch_size x seqlen_q x num_heads x head_size const float p_dropout, const float softmax_scale, const bool is_causal, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; const int seqlen_q = sizes[1]; const int num_heads = sizes[2]; const int head_size_og = sizes[3]; const int seqlen_k = k.size(1); const int num_heads_k = k.size(2); TORCH_CHECK(batch_size > 0, "batch size must be postive"); TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og); CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og); CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og); at::Tensor q_padded, k_padded, v_padded; if (head_size_og % 8 != 0) { q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { q_padded = q; k_padded = k; v_padded = v; } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og); if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } } else { out = torch::empty_like(q_padded); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size = round_multiple(head_size_og, 8); const int head_size_rounded = round_multiple(head_size, 32); const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor p; // Only return softmax if there's dropout to reduce compilation time if (return_softmax) { TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); } Flash_fwd_params params; set_params_fprop(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q_padded, k_padded, v_padded, out, /*cu_seqlens_q_d=*/nullptr, /*cu_seqlens_k_d=*/nullptr, return_softmax ? p.data_ptr() : nullptr, softmax_lse.data_ptr(), p_dropout, softmax_scale, is_causal); // This needs to match with run_mha_fwd_splitkv_dispatch const int block_n = is_sm90 || is_sm8x ? (head_size <= 64 ? 256 : (head_size <= 160 ? 128 : 64)) : (head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64)); const int num_n_blocks = (seqlen_k + block_n - 1) / block_n; // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel. // In any case we don't expect seqlen_q to be larger than 64 for inference. const int num_m_blocks = (seqlen_q + 64 - 1) / 64; params.num_splits = 1; if (p_dropout == 0.0f) { // SplitKV is not implemented for dropout params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount, num_n_blocks, 128); if (params.num_splits > 1) { at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size_rounded}, opts.dtype(at::kFloat)); params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr(); params.oaccum_ptr = out_accum.data_ptr(); } } // number of times random will be generated per thread, to offset philox counter in thc random // state // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); // Forward kernel will populate memory with the seed and offset. params.rng_state = reinterpret_cast(rng_state.data_ptr()); if (p_dropout > 0.0) { auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } auto stream = at::cuda::getCurrentCUDAStream().stream(); run_mha_fwd(params, stream); at::Tensor out_padded = out; if (head_size_og % 8 != 0) { out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); if (out_.has_value()) { out_.value().copy_(out); } } return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state}; } std::vector mha_varlen_fwd(const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i c10::optional &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens_q, // b+1 const at::Tensor &cu_seqlens_k, // b+1 const int max_seqlen_q, const int max_seqlen_k, const float p_dropout, const float softmax_scale, const bool zero_tensors, const bool is_causal, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); CHECK_CONTIGUOUS(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_k); const auto sizes = q.sizes(); const int total_q = sizes[0]; const int batch_size = cu_seqlens_q.numel() - 1; const int num_heads = sizes[1]; const int head_size_og = sizes[2]; const int total_k = k.size(0); const int num_heads_k = k.size(1); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); CHECK_SHAPE(q, total_q, num_heads, head_size_og); CHECK_SHAPE(k, total_k, num_heads_k, head_size_og); CHECK_SHAPE(v, total_k, num_heads_k, head_size_og); CHECK_SHAPE(cu_seqlens_q, batch_size + 1); CHECK_SHAPE(cu_seqlens_k, batch_size + 1); at::Tensor q_padded, k_padded, v_padded; if (head_size_og % 8 != 0) { q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { q_padded = q; k_padded = k; v_padded = v; } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, total_q, num_heads, head_size_og); if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } } else { out = torch::empty_like(q_padded); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size = round_multiple(head_size_og, 8); const int head_size_rounded = round_multiple(head_size, 32); const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat)); at::Tensor p; // Only return softmax if there's dropout to reduce compilation time if (return_softmax) { TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); } if (zero_tensors) { out.zero_(); softmax_lse.fill_(-std::numeric_limits::infinity()); if (return_softmax) {p.zero_();} } Flash_fwd_params params; set_params_fprop(params, batch_size, max_seqlen_q, max_seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q_padded, k_padded, v_padded, out, cu_seqlens_q.data_ptr(), cu_seqlens_k.data_ptr(), return_softmax ? p.data_ptr() : nullptr, softmax_lse.data_ptr(), p_dropout, softmax_scale, is_causal); // number of times random will be generated per thread, to offset philox counter in thc random // state // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); // Forward kernel will populate memory with the seed and offset. params.rng_state = reinterpret_cast(rng_state.data_ptr()); if (p_dropout > 0.0) { auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } auto stream = at::cuda::getCurrentCUDAStream().stream(); run_mha_fwd(params, stream); at::Tensor out_padded = out; if (head_size_og % 8 != 0) { out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); if (out_.has_value()) { out_.value().copy_(out); } } return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state}; } void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream, const bool configure) { FP16_SWITCH(!params.is_bf16, [&] { if (params.d <= 32) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 64) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 96) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 128) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 160) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 192) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 224) { run_mha_bwd_(params, stream, configure); } else if (params.d <= 256) { run_mha_bwd_(params, stream, configure); } }); } std::vector mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &softmax_lse, // b x h x seqlen_q c10::optional &dq_, // batch_size x seqlen_q x num_heads x head_size c10::optional &dk_, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &dv_, // batch_size x seqlen_k x num_heads_k x head_size const float p_dropout, // probability to drop const float softmax_scale, const bool is_causal, c10::optional gen_, c10::optional &rng_state) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm80 = dprops->major == 8 && dprops->minor == 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; const int seqlen_q = sizes[1]; const int num_heads = sizes[2]; const int head_size_og = dout.size(3); const int head_size = sizes[3]; const int seqlen_k = k.size(1); const int num_heads_k = k.size(2); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); if (head_size > 192) { TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800"); } TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = round_multiple(head_size, 32); const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8"); CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og); at::Tensor dq, dk, dv; if (dq_.has_value()) { dq = dq_.value(); TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); CHECK_DEVICE(dq); TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size); } else { dq = torch::empty_like(q); } if (dk_.has_value()) { dk = dk_.value(); TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); CHECK_DEVICE(dk); TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size); } else { dk = torch::empty_like(k); } if (dv_.has_value()) { dv = dv_.value(); TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); CHECK_DEVICE(dv); TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size); } else { dv = torch::empty_like(k); } at::Tensor dout_padded; if (head_size_og % 8 != 0) { dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { dout_padded = dout; } // bool loop = seqlen_k > blocksize_c; // TODO: change later, for now set to true for simplicity bool loop = true; // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat)); at::Tensor dq_accum; at::Tensor dk_accum, dv_accum; if (loop) { dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded, head_size_rounded}, opts.dtype(at::kFloat)); // dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat)); // dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat)); } at::Tensor dk_expanded, dv_expanded; if (num_heads_k != num_heads) { // MQA / GQA dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); } else { dk_expanded = dk; dv_expanded = dv; } Flash_bwd_params params; set_params_dgrad(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, dout_padded, dq, dk_expanded, dv_expanded, nullptr, nullptr, loop ? dq_accum.data_ptr() : nullptr, // loop ? dk_accum.data_ptr() : nullptr, // loop ? dv_accum.data_ptr() : nullptr, nullptr, nullptr, softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, is_causal); auto launch = &run_mha_bwd; // launch(params, stream, /*configure=*/true); auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; if ( rng_state.has_value() ) { params.rng_state = reinterpret_cast(rng_state.value().data_ptr()); } else if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); auto seeds = at::cuda::philox::unpack(params.philox_args); params.rng_state[0] = std::get<0>(seeds); params.rng_state[1] = std::get<1>(seeds); } launch(params, stream, /*configure=*/false); // For MQA/GQA we need to sum dK and dV across the groups if (num_heads_k != num_heads) { at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); } if (head_size_og % 8 != 0) { dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); } return { dq, dk, dv, softmax_d }; } std::vector mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &out, // total_q x num_heads x head_size const at::Tensor &softmax_lse, // b x h x s softmax logsumexp c10::optional &dq_, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i c10::optional &dk_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i c10::optional &dv_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens_q, // b+1 const at::Tensor &cu_seqlens_k, // b+1 const int max_seqlen_q, const int max_seqlen_k, // max sequence length to choose the kernel const float p_dropout, // probability to drop const float softmax_scale, const bool zero_tensors, const bool is_causal, c10::optional gen_, c10::optional &rng_state ) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm80 = dprops->major == 8 && dprops->minor == 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); CHECK_CONTIGUOUS(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_k); const auto sizes = q.sizes(); const int total_q = sizes[0]; const int batch_size = cu_seqlens_q.numel() - 1; const int num_heads = sizes[1]; const int head_size_og = dout.size(2); const int head_size = sizes[2]; const int total_k = k.size(0); const int num_heads_k = k.size(1); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); if (head_size > 192) { TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 requires A100/A800 or H100/H800"); } TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = round_multiple(head_size, 32); const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8"); CHECK_SHAPE(q, total_q, num_heads, head_size); CHECK_SHAPE(k, total_k, num_heads_k, head_size); CHECK_SHAPE(v, total_k, num_heads_k, head_size); CHECK_SHAPE(out, total_q, num_heads, head_size); CHECK_SHAPE(dout, total_q, num_heads, head_size_og); CHECK_SHAPE(cu_seqlens_q, batch_size + 1); CHECK_SHAPE(cu_seqlens_k, batch_size + 1); at::Tensor dq, dk, dv; if (dq_.has_value()) { dq = dq_.value(); TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); CHECK_DEVICE(dq); TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); CHECK_SHAPE(dq, total_q, num_heads, head_size); } else { dq = torch::empty_like(q); } if (dk_.has_value()) { dk = dk_.value(); TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); CHECK_DEVICE(dk); TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); CHECK_SHAPE(dk, total_k, num_heads_k, head_size); } else { dk = torch::empty_like(k); } if (dv_.has_value()) { dv = dv_.value(); TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); CHECK_DEVICE(dv); TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); CHECK_SHAPE(dv, total_k, num_heads_k, head_size); } else { dv = torch::empty_like(k); } at::Tensor dout_padded; if (head_size_og % 8 != 0) { dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { dout_padded = dout; } // bool loop = max_seqlen_k > blocksize_c; // TODO: change later, for now set to true for simplicity bool loop = true; // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat)); at::Tensor dq_accum; if (loop) { dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded, head_size_rounded}, opts.dtype(at::kFloat)); } at::Tensor dk_expanded, dv_expanded; if (num_heads_k != num_heads) { // MQA / GQA dk_expanded = torch::empty({total_k, num_heads, head_size}, opts); dv_expanded = torch::empty({total_k, num_heads, head_size}, opts); } else { dk_expanded = dk; dv_expanded = dv; } if( zero_tensors ) { dq.zero_(); dk_expanded.zero_(); dv_expanded.zero_(); softmax_d.zero_(); } Flash_bwd_params params; set_params_dgrad(params, batch_size, max_seqlen_q, max_seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, dout_padded, dq, dk_expanded, dv_expanded, cu_seqlens_q.data_ptr(), cu_seqlens_k.data_ptr(), loop ? dq_accum.data_ptr() : nullptr, nullptr, nullptr, softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, is_causal); auto launch = &run_mha_bwd; // launch(params, stream, /*configure=*/true); auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; if ( rng_state.has_value() ) { params.rng_state = reinterpret_cast(rng_state.value().data_ptr()); } else if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); auto seeds = at::cuda::philox::unpack(params.philox_args); params.rng_state[0] = std::get<0>(seeds); params.rng_state[1] = std::get<1>(seeds); } launch(params, stream, /*configure=*/false); // For MQA/GQA we need to sum dK and dV across the groups if (num_heads_k != num_heads) { at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); } if (head_size_og % 8 != 0) { dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); } return { dq, dk, dv, softmax_d }; } std::vector mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &kcache, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &vcache, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &k_, // batch_size x seqlen_knew x num_heads_k x head_size c10::optional &v_, // batch_size x seqlen_knew x num_heads_k x head_size c10::optional &seqlens_k_, // batch_size c10::optional &rotary_cos_, // seqlen_ro x (rotary_dim / 2) c10::optional &rotary_sin_, // seqlen_ro x (rotary_dim / 2) c10::optional &out_, // batch_size x seqlen_q x num_heads x head_size const float softmax_scale, bool is_causal, bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2 int num_splits ) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; int seqlen_q = sizes[1]; int num_heads = sizes[2]; const int head_size_og = sizes[3]; const int seqlen_k = kcache.size(1); const int num_heads_k = kcache.size(2); TORCH_CHECK(batch_size > 0, "batch size must be postive"); TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (seqlen_q == 1) { is_causal = false; } // causal=true is the same as causal=false in this case // Faster to transpose q from (b, 1, h, d) to (b, h, 1, d) in this case const int seqlenq_nheads_swapped = seqlen_q == 1 && num_heads_k == 1 && num_heads > 1; if (seqlenq_nheads_swapped) { q = q.transpose(1, 2); std::swap(seqlen_q, num_heads); } CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og); CHECK_SHAPE(kcache, batch_size, seqlen_k, num_heads_k, head_size_og); CHECK_SHAPE(vcache, batch_size, seqlen_k, num_heads_k, head_size_og); at::Tensor q_padded, kcache_padded, vcache_padded; if (head_size_og % 8 != 0) { q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { q_padded = q; kcache_padded = kcache; vcache_padded = vcache; } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og); if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } } else { out = torch::empty_like(q_padded); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size = round_multiple(head_size_og, 8); const int head_size_rounded = round_multiple(head_size, 32); const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); Flash_fwd_params params; set_params_fprop(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q_padded, kcache_padded, vcache_padded, out, /*cu_seqlens_q_d=*/nullptr, /*cu_seqlens_k_d=*/nullptr, /*p_ptr=*/nullptr, softmax_lse.data_ptr(), /*p_dropout=*/0.f, softmax_scale, is_causal); at::Tensor k, v, k_padded, v_padded; if (k_.has_value()) { TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in"); TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in"); TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache"); k = k_.value(); v = v_.value(); TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query"); TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query"); CHECK_DEVICE(k); CHECK_DEVICE(v); TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension"); int seqlen_knew = k.size(1); CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og); CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og); if (head_size_og % 8 != 0) { k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { k_padded = k; v_padded = v; } params.seqlen_knew = seqlen_knew; params.knew_ptr = k_padded.data_ptr(); params.vnew_ptr = v_padded.data_ptr(); // All stride are in elements, not bytes. params.knew_batch_stride = k_padded.stride(0); params.vnew_batch_stride = v_padded.stride(0); params.knew_row_stride = k_padded.stride(-3); params.vnew_row_stride = v_padded.stride(-3); params.knew_head_stride = k_padded.stride(-2); params.vnew_head_stride = v_padded.stride(-2); } if (seqlens_k_.has_value()) { auto seqlens_k = seqlens_k_.value(); TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32"); CHECK_DEVICE(seqlens_k); CHECK_CONTIGUOUS(seqlens_k); CHECK_SHAPE(seqlens_k, batch_size); params.cu_seqlens_k = static_cast(seqlens_k.data_ptr()); } params.is_seqlens_k_cumulative = !(seqlens_k_.has_value()); if (rotary_cos_.has_value()) { TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided"); auto rotary_cos = rotary_cos_.value(); CHECK_DEVICE(rotary_cos); params.rotary_dim = rotary_cos.size(1) * 2; TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim"); TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported"); const int seqlen_ro = rotary_cos.size(0); TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache"); CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2); CHECK_CONTIGUOUS(rotary_cos); TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided"); auto rotary_sin = rotary_sin_.value(); CHECK_DEVICE(rotary_sin); CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2); CHECK_CONTIGUOUS(rotary_sin); TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); params.rotary_cos_ptr = rotary_cos.data_ptr(); params.rotary_sin_ptr = rotary_sin.data_ptr(); params.is_rotary_interleaved = is_rotary_interleaved; } else { params.rotary_dim = 0; } // This needs to match with run_mha_fwd_splitkv_dispatch const int block_n = is_sm90 || is_sm8x ? (head_size <= 64 ? 256 : (head_size <= 160 ? 128 : 64)) : (head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64)); const int num_n_blocks = (seqlen_k + (params.knew_ptr == nullptr ? 0 : seqlen_q) + block_n - 1) / block_n; // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel. // In any case we don't expect seqlen_q to be larger than 64 for inference. const int num_m_blocks = (seqlen_q + 64 - 1) / 64; params.num_splits = num_splits; if (num_splits < 1) { params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount, num_n_blocks, 128); } if (params.num_splits > 1) { at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size_rounded}, opts.dtype(at::kFloat)); params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr(); params.oaccum_ptr = out_accum.data_ptr(); } auto stream = at::cuda::getCurrentCUDAStream().stream(); // Only split kernel supports appending to KV cache run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value()); if (head_size_og % 8 != 0) { out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); if (out_.has_value()) { out_.value().copy_(out); } if (k_.has_value()) { // It's expensive to copy the KV cache here for the case where head size not divisible by 8, // but we don't expect to get this case in practice. This is just so that the code works for that case. kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); } } if (seqlenq_nheads_swapped) { out = out.transpose(1, 2); softmax_lse = softmax_lse.transpose(1, 2); } return {out, softmax_lse}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.doc() = "FlashAttention"; m.def("fwd", &mha_fwd, "Forward pass"); m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)"); m.def("bwd", &mha_bwd, "Backward pass"); m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)"); m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache"); }