/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include #include "cute/tensor.hpp" #include "cutlass/gemm/collective/collective_builder.hpp" #include "named_barrier.hpp" #include "utils.h" namespace flash { using namespace cute; // template template struct CollectiveEpilogueFwd { using InputType = typename Ktraits::Element; using Element = typename Ktraits::OutputType; static constexpr int kBlockM = Ktraits::kBlockM; static constexpr int kBlockN = Ktraits::kBlockN; static constexpr int kBlockH = Ktraits::kBlockH; static constexpr int kHeadDim = Ktraits::kHeadDim; using TileShape_MNK = Shape, Int, Int>; static constexpr int kNWarps = Ktraits::kNWarps; static constexpr int kNThreads = kNWarps * cutlass::NumThreadsPerWarp; static constexpr bool Is_WS = Ktraits::Is_WS; static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup; static constexpr int NumMmaThreads = kNThreads - NumCopyThreads; static constexpr bool Is_split = Ktraits::Is_split; static constexpr bool No_smem_O = Ktraits::No_smem_O; #ifndef NO_FP8_COLUMN_PERMUTE static constexpr bool epi_column_permute = is_same_v; #else static constexpr bool epi_column_permute = false; #endif using GmemShapeOT = std::conditional_t< Is_split, typename Seqlen_traits::ShapeOAccumT, typename Seqlen_traits::ShapeT >; using GmemStrideOT = std::conditional_t< Is_split, typename Seqlen_traits::StrideOAccumT, typename Seqlen_traits::StrideT >; using GmemLayoutOT = std::conditional_t< Is_split, typename Seqlen_traits::LayoutOAccumT, typename Seqlen_traits::LayoutT >; using GmemLayoutLseT = std::conditional_t< Is_split, typename Seqlen_traits::LayoutLseAccumT, typename Seqlen_traits::LayoutLseT >; using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>()); using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_MNK{}))); using SmemLayoutOCopy = typename Ktraits::SmemLayoutOCopy; using TileShapeOCopy = typename Ktraits::TileShapeOCopy; using SmemCopyAtomO = std::conditional_t, Element>, Copy_Atom>; using SharedStorage = cute::array_aligned>; using GmemTiledCopyOTMA = cute::SM90_TMA_STORE; using TMA_O = decltype(make_tma_copy( GmemTiledCopyOTMA{}, make_tensor( make_gmem_ptr(static_cast(nullptr)), GmemShapeOT{}, GmemStrideOT{} ), SmemLayoutOCopy{}, TileShapeOCopy{}, _1{})); // no mcast for O // These are for storing the output tensor without TMA (e.g., for setting output to zero and var-seq-len) static constexpr int kNumVecElem = ceil_div(128, sizeof_bits_v); static_assert(kHeadDim % kNumVecElem == 0); static constexpr int kNumThreadsPerRow = kHeadDim / kNumVecElem; static_assert(NumMmaThreads % kNumThreadsPerRow == 0); static constexpr int kNumRows = NumMmaThreads / kNumThreadsPerRow; using TiledCopyOAtom = cute::Copy_Atom, Element>; using TiledCopyOThrLayout = decltype(cute::make_layout( cute::make_shape(Int{}, Int{}), LayoutRight{})); using TiledCopyOValLayout = decltype(cute::make_layout( cute::make_shape(_1{}, Int{}), LayoutRight{})); using TiledCopyO = decltype(make_tiled_copy( TiledCopyOAtom{}, TiledCopyOThrLayout{}, // Thr layout TiledCopyOValLayout{} // Val layout )); // used for rmem -> smem O copy in fp8 kernel to undo column permutation using ThreadLayoutrO = Layout, _4, _1>, Stride<_4, _32, _1, _0>>; using ValueLayoutrO = Layout, Int>, Stride<_0, _2, Stride<_4, _1>, _8>>; using TiledCopyrO = decltype(make_tiled_copy(Copy_Atom, Element>{}, ThreadLayoutrO{}, ValueLayoutrO{})); using TiledCopyShaperO = Shape<_8, Int, _16, Int>; using SmemLayoutrO = decltype(composition(SmemLayoutO{}, Layout{})); // Host side kernel arguments struct Arguments { Element* ptr_O; GmemLayoutOT const layout_O; float* ptr_LSE; GmemLayoutLseT const layout_LSE; }; // Device side kernel params struct Params { Element* ptr_O; GmemLayoutOT const layout_O; float* ptr_LSE; GmemLayoutLseT const layout_LSE; TMA_O tma_store_O; }; static Params to_underlying_arguments(Arguments const& args) { Tensor mO = make_tensor(make_gmem_ptr(args.ptr_O), args.layout_O); TMA_O tma_store_O = make_tma_copy( GmemTiledCopyOTMA{}, mO, SmemLayoutOCopy{}, TileShapeOCopy{}, _1{}); // no mcast for O return {args.ptr_O, args.layout_O, args.ptr_LSE, args.layout_LSE, tma_store_O}; } /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance CUTLASS_DEVICE static void prefetch_tma_descriptors(Params const& epilogue_params) { if constexpr (!Seqlen_traits::UseVarSeqLen && !No_smem_O) { cute::prefetch_tma_descriptor(epilogue_params.tma_store_O.get_tma_descriptor()); } } template CUTLASS_DEVICE void store(Params const& epilogue_params, FrgTensorO const& tOrO, FrgTensorLSE const& lse, SharedStorage& shared_storage, TiledMma tiled_mma, int thread_idx, cute::tuple const& block_coord, const Seqlen_traits& seqlen_traits_q, const cutlass::FastDivmod& qhead_per_khead_divmod ) { auto [m_block, n_split_idx, bidh, bidb] = block_coord; const int bidh_kv = qhead_per_khead_divmod.divide(bidh); const int h_block = bidh % int(qhead_per_khead_divmod); Tensor tOrO_out = flash::convert_type(tOrO); if constexpr(!No_smem_O) { if constexpr (!epi_column_permute) { Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{}); auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma); auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx); Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N) Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N) // Make sure all WGs have finished reading V cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast(FwdNamedBarriers::ValueEmpty) /*id*/); cute::copy(smem_tiled_copy_O, taccOrO, taccOsO); cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); } else { TiledCopyrO rmem_tiled_copy_O; Tensor sOacc = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutrO{}); auto rmem_thr_copy_O = rmem_tiled_copy_O.get_thread_slice(thread_idx); Tensor taccOsO = rmem_thr_copy_O.partition_D(sOacc); Tensor taccOrO = make_tensor(tOrO_out.data(), shape(taccOsO)); // Make sure all WGs have finished reading V cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast(FwdNamedBarriers::ValueEmpty) /*id*/); cute::copy(rmem_tiled_copy_O, taccOrO, taccOsO); cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); } } Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE); Tensor caccO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})); auto thread_mma = tiled_mma.get_thread_slice(thread_idx); Tensor taccOcO = thread_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K) static_assert(decltype(size<0, 0>(taccOcO))::value == 2); static_assert(decltype(size<0, 1>(taccOcO))::value == 2); // taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices. Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{}); CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // 2 * MMA_M if constexpr(!Seqlen_traits::UseGQAPacking) { Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor( mLSE, Shape>{}, bidh, bidb, n_split_idx)(_, m_block); if (get<1>(taccOcO_row(_0{})) == 0) { #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { const int row = get<0>(taccOcO_row(mi)); if (row < seqlen_traits_q.actual_seq_len - m_block * kBlockM) { gLSE(row) = lse(mi); } } } } else { // shape<1>(epilogue_params.layout_O) == h/h_k // In common case where ceil_div(h/h_k, kBlockH) == 1, // int(qhead_per_khead_divmod) == 1, bidh_kv == bidh, h_block == 0 const int h_offset = shape<1>(epilogue_params.layout_O) * bidh_kv + h_block * kBlockH; const int m_bound = seqlen_traits_q.actual_seq_len - m_block * (kBlockM/kBlockH); const int h_bound = shape<1>(epilogue_params.layout_O) - h_block * kBlockH; #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { const int row = get<0>(taccOcO_row(mi)); const int h_local = row % kBlockH; const int m_local = row/kBlockH; if(h_local < h_bound && m_local < m_bound) { Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor(mLSE, Shape>{}, h_offset + h_local, bidb, n_split_idx) (_, m_block); gLSE(m_local) = lse(mi); } } } if constexpr (No_smem_O) { flash::write_rmem_to_gmem( tOrO_out, epilogue_params.ptr_O, epilogue_params.layout_O, TileShapeOCopy{}, m_block, h_block, bidh, bidh_kv, bidb, n_split_idx, tiled_mma, seqlen_traits_q, thread_idx); } else { int write_warp_idx = kNWarps - 1; if (cutlass::canonical_warp_idx_sync() == write_warp_idx) { cutlass::arch::NamedBarrier::sync( NumMmaThreads + cutlass::NumThreadsPerWarp, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier ); } TiledCopyO gmem_tiled_copy_O; Tensor sO_out = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutOCopy{}); if constexpr(!Seqlen_traits::UseGQAPacking) { flash::write_O( epilogue_params.ptr_O, epilogue_params.tma_store_O, gmem_tiled_copy_O, epilogue_params.layout_O, TileShapeOCopy{}, sO_out, m_block, bidh, bidb, n_split_idx, seqlen_traits_q, write_warp_idx, tiled_mma, tOrO_out ); } else { Tensor mO = epilogue_params.tma_store_O.get_tma_tensor(epilogue_params.layout_O.shape()); Tensor gO = seqlen_traits_q.get_o_local_tile_tensor( mO, TileShapeOCopy{}, bidh_kv, bidb, n_split_idx) (_, _, _, m_block, h_block); // (bM/bH, bH, K) auto block_tma_O = epilogue_params.tma_store_O.get_slice(_0{}); Tensor tOgO = block_tma_O.partition_D(gO); // (TMA, TMA_M, TMA_K) Tensor tOsO = block_tma_O.partition_S(sO_out); // (TMA, TMA_M, TMA_K) int const lane_predicate = cute::elect_one_sync(); int const warp_idx = cutlass::canonical_warp_idx_sync(); if (warp_idx == write_warp_idx && lane_predicate) { cute::copy(epilogue_params.tma_store_O, tOsO, tOgO); tma_store_arrive(); } } // if constexpr(Seqlen_traits::UseVarSeqLen) { // cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast(FwdNamedBarriers::OutputEmpty) /*id*/); // } } } CUTLASS_DEVICE void store_tail() { if constexpr(!Seqlen_traits::UseVarSeqLen && !No_smem_O) { tma_store_wait<0>(); } } // Write 0 to output and -inf to LSE template CUTLASS_DEVICE void store_zero( Params const& epilogue_params, SharedStorage& shared_storage, int thread_idx, cute::tuple const& block_coord, const Seqlen_traits& seqlen_traits_q ) { static_assert(!Seqlen_traits::UseGQAPacking, "Don't call store_zero for gqa packed layouts."); auto [m_block, n_split_idx, bidh, bidb] = block_coord; if constexpr(!Is_split) { Tensor mO = make_tensor(make_gmem_ptr(epilogue_params.ptr_O), epilogue_params.layout_O); Tensor gO = seqlen_traits_q.get_o_local_tile_tensor( mO, select<0, 2>(TileShape_MNK{}), bidh, bidb, n_split_idx )(_, _, m_block); // (M, K) TiledCopyO gmem_tiled_copy_O; auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx); Tensor tOgO = gmem_thr_copy_O.partition_D(gO); Tensor tOrO = make_fragment_like(tOgO); clear(tOrO); // Construct identity layout for sO Tensor cO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})); // (BLK_M,BLK_K) -> (blk_m,blk_k) // Repeat the partitioning with identity layouts Tensor tOcO = gmem_thr_copy_O.partition_D(cO); Tensor tOpO = make_tensor(make_shape(size<2>(tOgO))); #pragma unroll for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(epilogue_params.layout_O.shape()); } // Clear_OOB_K must be false since we don't want to write zeros to gmem flash::copy( gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_traits_q.actual_seq_len - m_block * kBlockM ); } Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE); Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor( mLSE, Shape>{}, bidh, bidb, n_split_idx)(_, m_block); static_assert(kBlockM <= NumMmaThreads); if (thread_idx < min(kBlockM, seqlen_traits_q.actual_seq_len - m_block * kBlockM)) { gLSE(thread_idx) = !Is_split ? INFINITY : -INFINITY; } } // Write 0 to output and -inf to LSE template CUTLASS_DEVICE void store_zero_gqa( Params const& epilogue_params, SharedStorage& shared_storage, int thread_idx, cute::tuple const& block_coord, const Seqlen_traits& seqlen_traits_q, const cutlass::FastDivmod& qhead_per_khead_divmod ) { static_assert(Seqlen_traits::UseGQAPacking, "Special store_zero method for GQA packed layouts."); auto [m_block, n_split_idx, bidh, bidb] = block_coord; const int bidh_kv = qhead_per_khead_divmod.divide(bidh); const int h_block = bidh % int(qhead_per_khead_divmod); const int h_bound = min(shape<1>(epilogue_params.layout_O) - h_block * kBlockH, kBlockH); const int m_bound = min(seqlen_traits_q.actual_seq_len - m_block * (kBlockM/kBlockH), kBlockM/kBlockH); if constexpr(!Is_split) { Tensor mO = make_tensor(make_gmem_ptr(epilogue_params.ptr_O), epilogue_params.layout_O); Tensor gO = seqlen_traits_q.get_o_local_tile_tensor( mO, TileShapeOCopy{}, bidh_kv, bidb, n_split_idx) (_, _, _, m_block, h_block); // (bM/bH, bH, K) TiledCopyO gmem_tiled_copy_O; auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx); if constexpr(kNumRows <= kBlockH) { // slice into bM/bH and write out zero tiles (bH, K) Tensor tOgO = gmem_thr_copy_O.partition_D(gO(0,_,_)); Tensor tOrO = make_fragment_like(tOgO); clear(tOrO); Tensor cO = cute::make_identity_tensor(select<1, 2>(TileShapeOCopy{})); Tensor tOcO = gmem_thr_copy_O.partition_D(cO); // dummy predicate, unused since Is_even_K=true Tensor tOpO = make_tensor(make_shape(size<2>(tOgO))); #pragma unroll for(int m = 0; m < m_bound; ++m) { tOgO = gmem_thr_copy_O.partition_D(gO(m,_,_)); flash::copy( gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, h_bound ); } } else { // slice into bH and write out zero tiles (bM/bH, K) Tensor tOgO = gmem_thr_copy_O.partition_D(gO(_,0,_)); Tensor tOrO = make_fragment_like(tOgO); clear(tOrO); Tensor cO = cute::make_identity_tensor(select<0, 2>(TileShapeOCopy{})); Tensor tOcO = gmem_thr_copy_O.partition_D(cO); // dummy predicate, unused since Is_even_K=true Tensor tOpO = make_tensor(make_shape(size<2>(tOgO))); #pragma unroll for(int h = 0; h < h_bound; ++h) { tOgO = gmem_thr_copy_O.partition_D(gO(_,h,_)); flash::copy( gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, m_bound ); } } } const int h_offset = shape<1>(epilogue_params.layout_O) * bidh_kv + h_block * kBlockH; const int thread_idx_h = thread_idx % kBlockH; const int thread_idx_m = thread_idx / kBlockH; Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), epilogue_params.layout_LSE); Tensor gLSE = seqlen_traits_q.get_lse_local_tile_tensor( mLSE, Shape>{}, h_offset + thread_idx_h, bidb, n_split_idx)(_, m_block); if(thread_idx_h < h_bound && thread_idx_m < m_bound) { gLSE(thread_idx_m) = !Is_split ? INFINITY : -INFINITY; } } }; } // namespace flash