# Install the newest triton version with # pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python" import pickle import math import time import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined from flash_attn import flash_attn_qkvpacked_func from flash_attn_interface import flash_attn_func, _flash_attn_forward try: from triton_fused_attention import attention as attention_triton except ImportError: attention_triton = None try: import xformers.ops as xops except ImportError: xops = None try: import cudnn except ImportError: cudnn = None def convert_to_cudnn_type(torch_type): if torch_type == torch.float16: return cudnn.data_type.HALF elif torch_type == torch.bfloat16: return cudnn.data_type.BFLOAT16 elif torch_type == torch.float32: return cudnn.data_type.FLOAT elif torch_type == torch.int32: return cudnn.data_type.INT32 elif torch_type == torch.int64: return cudnn.data_type.INT64 elif torch_type == torch.float8_e4m3fn: return cudnn.data_type.FP8_E4M3 elif torch_type == torch.float8_e4m3fn: return cudnn.data_type.FP8_E5M2 else: raise ValueError("Unsupported tensor data type.") def cudnn_spda_setup(qkv, seqlen_q, seqlen_k, causal=False): b, _, _, nheads, headdim = qkv.shape assert cudnn is not None, 'CUDNN is not available' o_gpu = torch.zeros(b, seqlen_q, nheads, headdim, dtype=qkv.dtype, device=qkv.device) o_gpu_transposed = torch.as_strided( o_gpu, [b, nheads, seqlen_q, headdim], [nheads * seqlen_q * headdim, headdim, nheads * headdim, 1], ) stats_gpu = torch.empty(b, nheads, seqlen_q, 1, dtype=torch.float32, device=qkv.device) amax_s_gpu = torch.empty(1, 1, 1, 1, dtype=torch.float32, device=qkv.device) amax_o_gpu = torch.empty(1, 1, 1, 1, dtype=torch.float32, device=qkv.device) graph = cudnn.pygraph( io_data_type=convert_to_cudnn_type(qkv.dtype), intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) new_q = torch.as_strided( qkv, [b, nheads, seqlen_q, headdim], [seqlen_q * nheads * headdim * 3, headdim, headdim * nheads * 3, 1], storage_offset=0, ) q = graph.tensor( name = "Q", dim = list(new_q.shape), stride = list(new_q.stride()), data_type=convert_to_cudnn_type(qkv.dtype) ) new_k = torch.as_strided( qkv, [b, nheads, seqlen_k, headdim], [seqlen_k * nheads * headdim * 3, headdim, headdim * nheads * 3, 1], storage_offset=nheads * headdim, ) k = graph.tensor( name = "K", dim = list(new_k.shape), stride = list(new_k.stride()), data_type=convert_to_cudnn_type(qkv.dtype) ) new_v = torch.as_strided( qkv, [b, nheads, seqlen_k, headdim], [seqlen_k * nheads * headdim * 3, headdim, headdim * nheads * 3, 1], storage_offset=nheads * headdim * 2, ) v = graph.tensor( name = "V", dim = list(new_v.shape), stride = list(new_v.stride()), data_type=convert_to_cudnn_type(qkv.dtype) ) def get_default_scale_tensor(): return graph.tensor( dim = [1, 1, 1, 1], stride = [1, 1, 1, 1], data_type=cudnn.data_type.FLOAT ) default_scale_gpu = torch.ones(1, 1, 1, 1, dtype=torch.float32, device="cuda") descale_q = get_default_scale_tensor() descale_k = get_default_scale_tensor() descale_v = get_default_scale_tensor() descale_s = get_default_scale_tensor() scale_s = get_default_scale_tensor() scale_o = get_default_scale_tensor() o, _, amax_s, amax_o = graph.sdpa_fp8( q=q, k=k, v=v, descale_q=descale_q, descale_k=descale_k, descale_v=descale_v, descale_s=descale_s, scale_s=scale_s, scale_o=scale_o, is_inference=True, attn_scale=1.0 / math.sqrt(headdim), use_causal_mask=causal, name="sdpa", ) o.set_output(True).set_dim(o_gpu_transposed.shape).set_stride(o_gpu_transposed.stride()) amax_s.set_output(False).set_dim(amax_s_gpu.shape).set_stride(amax_s_gpu.stride()) amax_o.set_output(False).set_dim(amax_o_gpu.shape).set_stride(amax_o_gpu.stride()) # stats.set_output(True).set_data_type(cudnn.data_type.FLOAT) graph.validate() graph.build_operation_graph() graph.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph.check_support() graph.build_plans() variant_pack = { q: new_q, k: new_k, v: new_v, descale_q: default_scale_gpu, descale_k: default_scale_gpu, descale_v: default_scale_gpu, descale_s: default_scale_gpu, scale_s: default_scale_gpu, scale_o: default_scale_gpu, o: o_gpu_transposed, amax_s: amax_s_gpu, amax_o: amax_o_gpu, } workspace = torch.empty(graph.get_workspace_size(), device="cuda", dtype=torch.uint8) def run(*args, **kwargs): graph.execute(variant_pack, workspace) return o_gpu, amax_o_gpu return run def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): assert mode in ["fwd", "bwd", "fwd_bwd"] f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) def efficiency(flop, time): return (flop / time / 10**12) if not math.isnan(time) else 0.0 def time_fwd(func, *args, **kwargs): time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark time_f = benchmark_forward(func, *args, **kwargs) return time_f[1].mean torch.manual_seed(0) repeats = 30 device = 'cuda' # dtype = torch.float16 dtype = torch.float8_e4m3fn # bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4224), (2, 8448), (1, 8448 * 2)] bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 8192 * 2)] # bs_seqlen_vals = [(4, 4096), (2, 8192), (1, 8192 * 2)] # bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048)] causal_vals = [False, True] headdim_vals = [64, 128, 256] dim = 2048 # dim = 256 dropout_p = 0.0 methods = (["Pytorch", "Flash3"] + (["cuDNN"] if cudnn is not None else []) # + (["Triton"] if attention_triton is not None else []) # + (["xformers.c"] if xops is not None else []) # + (["xformers.f"] if xops is not None else []) ) time_f = {} time_b = {} time_f_b = {} speed_f = {} speed_b = {} speed_f_b = {} for causal in causal_vals: for headdim in headdim_vals: for batch_size, seqlen in bs_seqlen_vals: torch.cuda.empty_cache() config = (causal, headdim, batch_size, seqlen) nheads = dim // headdim q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=torch.bfloat16, requires_grad=False) for _ in range(3)] qkv = torch.stack([q, k, v], dim=2) qkv = qkv.to(torch.bfloat16) f = time_fwd(attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False) time_f[config, "Pytorch"] = f res_baseline = attention_pytorch(qkv, dropout_p, causal=causal) if attention_triton is not None: q_transposed = q.transpose(1, 2).contiguous().to(torch.float8_e4m3fn) k_transposed = k.transpose(1, 2).contiguous().to(torch.float8_e4m3fn) v_transposed = v.transpose(1, 2).contiguous().permute(0, 1, 3, 2).to(torch.float8_e4m3fn) scale = 1 / math.sqrt(headdim) f = time_fwd( attention_triton, q_transposed, k_transposed, v_transposed, causal, scale, repeats=5, verbose=False, desc='Triton' ) f = time_fwd( attention_triton, q_transposed, k_transposed, v_transposed, causal, scale, repeats=repeats, verbose=False, desc='Triton' ) time_f[config, "Triton"] = f res = attention_triton( q_transposed, k_transposed, v_transposed.permute(0, 1, 3, 2), causal, scale ).half().transpose(1, 2) torch.testing.assert_close(res, res_baseline, atol=0.5, rtol=0.5) # out = torch.empty_like(q) q, k, v = q.to(dtype), k.to(dtype), v.to(dtype) softmax_scale = q.shape[-1] ** (-0.5) descale_q = torch.tensor([1.0], dtype=torch.float32, device='cuda') descale_k = torch.tensor([1.0], dtype=torch.float32, device='cuda') descale_v = torch.tensor([1.0], dtype=torch.float32, device='cuda') # f = time_fwd(flash_attn_func, q, k, v, causal=causal, repeats=repeats, verbose=False) f = time_fwd( _flash_attn_forward, q, k, v, softmax_scale, causal=causal, window_size=(-1,-1), descale_q=descale_q, descale_k=descale_k, descale_v=descale_v, repeats=repeats, verbose=False ) # res = flash_attn_func(q, k, v, causal=causal) # torch.testing.assert_close(res.half(), res_baseline, atol=0.05, rtol=0.05) time_f[config, "Flash3"] = f if cudnn is not None: qkv_fp8 = qkv.to(dtype) time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark f = time_fwd( cudnn_spda_setup( qkv_fp8, seqlen, seqlen, causal=causal ), repeats=repeats, verbose=False ) time_f[config, "cuDNN"] = f # res, amax_o = cudnn_spda_setup( # qkv_fp8, seqlen, seqlen, # causal=causal # )() # res = res.half() # TODO: CUDNN has numerics issues when # num_heads=16, dim=128, seq_len=1024, batch_size=2 # or larger sizes. # res_cpu = res.cpu().reshape(-1) # res_baseline_cpu = res_baseline.cpu().reshape(-1) # print(amax_o) # print(res) # print(res_baseline) # for i in range(len(res_cpu)): # item = res_cpu[i] # item_baseline = res_baseline_cpu[i] # if abs(item - item_baseline) > 0.5: # print(i) # print(item) # print(item_baseline) # torch.testing.assert_close(res, res_baseline, atol=0.05, rtol=0.05) print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###") for method in methods: speed_f[config, method] = efficiency( flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"), time_f[config, method] ) #print (time_f[config,method]) print( f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, {time_f[config, method] * 1e3} ms, " ) # with open('flash3_attn_time.plk', 'wb') as fp: # pickle.dump((time_f, time_b, time_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)