# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py import math import torch import torch.nn as nn import torch.nn.functional as F # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(y, bias): x = bias + y return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, y, bias): """Assume that y has shape (B, D) and bias has shape (D)""" x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * ( 1 + tanh_out ) grad_y = ff * g return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype) class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(input, bias) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, input, bias) return tmp, tmp bias_gelu_impl = GeLUFunction.apply # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def gelu_fwd(x): return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def gelu_bwd(g, x): tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * ( 1 + tanh_out ) return (ff * g).to(dtype=x.dtype) class FastGeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input): ctx.save_for_backward(input) return gelu_fwd(input) @staticmethod def backward(ctx, grad_output): (input,) = ctx.saved_tensors tmp = gelu_bwd(grad_output, input) return tmp fast_gelu_impl = FastGeLUFunction.apply @torch.jit.script def relu_bwd(g, x): return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype) @torch.jit.script def sqrelu_fwd(x): r = F.relu(x) return (r * r).to(dtype=x.dtype) @torch.jit.script def sqrelu_bwd(g, x): return (2.0 * g * F.relu(x)).to(dtype=x.dtype) swiglu_fwd_codestring = """ template T swiglu_fwd(T x, T y) { return float(x) * float(y) / (1.0f + ::exp(-float(x))); } """ swiglu_bwd_codestring = """ template T swiglu_bwd(T x, T y, T g, T& dx, T& dy) { float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x))); dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y); dy = float(x) * x_sigmoid * float(g); } """ swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring) swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2) class SwiGLUFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, y): ctx.save_for_backward(x, y) return swiglu_fwd(x, y) @staticmethod def backward(ctx, dout): x, y = ctx.saved_tensors return swiglu_bwd(x, y, dout) swiglu = SwiGLUFunction.apply