#include // CUDA forward declarations std::vector softmax_xentropy_cuda( const at::Tensor &input, const at::Tensor &labels, const float smoothing, const int total_classes); at::Tensor softmax_xentropy_backward_cuda( const at::Tensor &grad_loss, at::Tensor &logits, const at::Tensor &max_log_sum_exp, const at::Tensor &labels, const float smoothing, const bool inplace, const int total_classes); // C++ interface #define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) std::vector softmax_xentropy_forward( const at::Tensor &input, const at::Tensor &labels, const float smoothing, const int total_classes=-1) { // For tensor parallel cross entropy with smoothing, we want to pass in the total number // of classes so that smoothing can be applied correctly. If total_classes=-1, use the // last dimension of the input tensor. CHECK_INPUT(input); CHECK_INPUT(labels); return softmax_xentropy_cuda(input, labels, smoothing, total_classes); } at::Tensor softmax_xentropy_backward( const at::Tensor &grad_loss, at::Tensor &logits, const at::Tensor &max_log_sum_exp, const at::Tensor &labels, const float smoothing, const bool inplace, const int total_classes=-1) { CHECK_INPUT(grad_loss); CHECK_INPUT(logits); CHECK_INPUT(max_log_sum_exp); CHECK_INPUT(labels); return softmax_xentropy_backward_cuda(grad_loss, logits, max_log_sum_exp, labels, smoothing, inplace, total_classes); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &softmax_xentropy_forward, "Softmax cross entropy loss with label smoothing forward (CUDA)", py::arg("input"), py::arg("labels"), py::arg("smoothing"), py::arg("total_classes")=-1); m.def("backward", &softmax_xentropy_backward, "Softmax cross entropy loss with label smoothing backward (CUDA)", py::arg("grad_loss"), py::arg("logits"), py::arg("max_log_sum_exp"), py::arg("labels"), py::arg("smoothing"), py::arg("inplace"), py::arg("total_classes")=-1); }