#pragma once #include "ln.h" #include "ln_utils.cuh" #include "ln_kernel_traits.h" #include "static_switch.h" namespace layer_norm { template __global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) void ln_bwd_kernel(layer_norm::BwdParams params) { enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA }; enum { WARPS_M = Ktraits::WARPS_M }; enum { WARPS_N = Ktraits::WARPS_N }; enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW }; enum { COLS = Ktraits::COLS }; enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW }; enum { LDGS = Ktraits::LDGS }; enum { NUM_ELTS = Ktraits::ELTS_PER_LDG }; enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP }; enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW }; using input_t = typename Ktraits::input_t; using compute_t = typename Ktraits::compute_t; using index_t = typename Ktraits::index_t; using mask_t = typename Ktraits::mask_t; using Ivec = typename Ktraits::Ivec; using Rvec = typename Ktraits::Rvec; using Ovec = typename Ktraits::Ovec; using Wvec = typename Ktraits::Wvec; using Cvec = typename Ktraits::Cvec; using Mvec = typename Ktraits::Mvec; using Reducer = typename Ktraits::Reducer; using reduce_t = typename Reducer::Type; extern __shared__ char smem_[]; const bool has_residual = params.dresidual != nullptr; const bool prenorm = params.dx != nullptr; const index_t tidx = threadIdx.x; const index_t bidn = blockIdx.x % CTAS_PER_ROW; const index_t bidm = blockIdx.x / CTAS_PER_ROW; const index_t lane = tidx % THREADS_PER_WARP; const index_t warp = tidx / THREADS_PER_WARP; const index_t warp_m = warp / Ktraits::WARPS_N; const index_t warp_n = warp % Ktraits::WARPS_N; const index_t tid_r = warp_n * THREADS_PER_WARP + lane; const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m; const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane; static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW); const input_t *rowscale = static_cast(params.rowscale); const index_t *x0_subset = static_cast(params.x0_subset); const index_t *z_subset = static_cast(params.z_subset); Cvec dzy_sum[LDGS]; Cvec dz_sum[LDGS]; Cvec dcolscale_sum[LDGS]; memset(dzy_sum, 0, sizeof(dzy_sum)); memset(dz_sum, 0, sizeof(dz_sum)); if (Has_colscale) { memset(dcolscale_sum, 0, sizeof(dcolscale_sum)); } compute_t * smem_wgrad = reinterpret_cast(smem_); char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD; Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad); Sum sum; const index_t num_valid_ldgs = ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + Ktraits::VEC_COLS_PER_LDG) / Ktraits::VEC_COLS_PER_LDG; Wvec gamma[LDGS]; Wvec colscale[LDGS]; index_t idx = c; #pragma unroll for( int it = 0; it < LDGS; it++ ) { if (Is_even_cols || (it < num_valid_ldgs)) { gamma[it].load_from(params.gamma, idx); if (Has_colscale) { colscale[it].load_from(params.colscale, idx); } idx += Ktraits::VEC_COLS_PER_LDG; } } // TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the // last blocks with syncthreads! // grid stride over rows #pragma unroll 1 for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) { const compute_t mu_r = static_cast(params.mu)[row]; const compute_t rs_r = static_cast(params.rs)[row]; const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const; const int row_z = !Has_subset ? row + 1 : z_subset[row]; const int row_x0 = !Has_subset ? row + 1 : x0_subset[row]; const bool load_dz = !Has_subset || row_z > 0; const bool save_dx0 = !Has_subset || row_x0 > 0; Mvec dmask[LDGS]; Rvec dx[LDGS]; compute_t dy[LDGS * NUM_ELTS]; compute_t y[LDGS * NUM_ELTS]; compute_t mdy_local = 0.f; compute_t mdyy_local = 0.f; // If dz is not loaded, then dy should be 0 and we don't care about the value of y. if (load_dz) { index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; index_t idx_z = !Has_subset ? idx_x : (load_dz ? (row_z - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); #pragma unroll for( int it = 0; it < LDGS; it++ ) { if (Is_even_cols || (it < num_valid_ldgs)) { Rvec x; Ovec dz; dz.load_from(params.dz, !Has_subset ? idx_x : idx_z); if (prenorm) { dx[it].load_from(params.dx, idx_x); } x.load_from(params.x, idx_x); if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); } idx_x += Ktraits::VEC_COLS_PER_LDG; idx_z += Ktraits::VEC_COLS_PER_LDG; idx_x0 += Ktraits::VEC_COLS_PER_LDG; #pragma unroll for( int jt = 0; jt < NUM_ELTS; jt++ ) { compute_t x_tmp = x.data.elt[jt]; compute_t y_tmp = rs_r * (x_tmp - (!params.is_rms_norm ? mu_r : 0.f)); compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]) * compute_t(dz.data.elt[jt]); compute_t dz_tmp = dz.data.elt[jt]; mdy_local += dy_tmp; mdyy_local += dy_tmp * y_tmp; dy[it * NUM_ELTS + jt] = dy_tmp; y[it * NUM_ELTS + jt] = y_tmp; dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp; dz_sum[it].data.elt[jt] += dz_tmp; } } } } else { index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); #pragma unroll for( int it = 0; it < LDGS; it++ ) { if (Is_even_cols || (it < num_valid_ldgs)) { if (prenorm) { dx[it].load_from(params.dx, idx_x); } if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); } idx_x += Ktraits::VEC_COLS_PER_LDG; idx_x0 += Ktraits::VEC_COLS_PER_LDG; } } } reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum); mdy_local = layer_norm::Get<0>::of(result) * params.inverse_cols; mdyy_local = layer_norm::Get<1>::of(result) * params.inverse_cols; index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); #pragma unroll for( int it = 0; it < LDGS; it++ ) { if (Is_even_cols || (it < num_valid_ldgs)) { Ivec dx0; Rvec dresidual; Ivec x0; if (Has_colscale && save_dx0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); } #pragma unroll for( int jt = 0; jt < NUM_ELTS; jt++ ) { compute_t dx_tmp_res; if (load_dz) { compute_t dy_tmp = dy[it * NUM_ELTS + jt]; compute_t y_tmp = y[it * NUM_ELTS + jt]; compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + (!params.is_rms_norm ? mdy_local : 0.f))); dx_tmp_res = prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp; } else { dx_tmp_res = prenorm ? compute_t(dx[it].data.elt[jt]) : 0.f; } if (has_residual) { dresidual.data.elt[jt] = dx_tmp_res; } if (save_dx0) { compute_t dx0_tmp_res = dx_tmp_res * rowscale_val; if (Is_dropout) { dx0_tmp_res *= params.dropout_scale; if (Has_colscale) { dcolscale_sum[it].data.elt[jt] += dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(x0.data.elt[jt]) : 0.f; dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(colscale[it].data.elt[jt]) : 0.f; } else { dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res : 0.f; } } else { if (Has_colscale) { dcolscale_sum[it].data.elt[jt] += dx0_tmp_res * compute_t(x0.data.elt[jt]); dx0.data.elt[jt] = dx0_tmp_res * compute_t(colscale[it].data.elt[jt]); } else { dx0.data.elt[jt] = dx0_tmp_res; } } } } if (has_residual) { dresidual.store_to(params.dresidual, idx_x); } if (save_dx0) { dx0.store_to(params.dx0, !Has_subset ? idx_x : idx_x0); } idx_x += Ktraits::VEC_COLS_PER_LDG; idx_x0 += Ktraits::VEC_COLS_PER_LDG; } } } // end: grid stride loop if( WARPS_M == 1 ) { idx = r * params.cols / Ktraits::ELTS_PER_LDG + c; #pragma unroll for( int it = 0; it < LDGS; it++ ) { if (Is_even_cols || (it < num_valid_ldgs)) { dz_sum[it].store_to(params.dbeta_part, idx); dzy_sum[it].store_to(params.dgamma_part, idx); if (Has_colscale) { dcolscale_sum[it].store_to(params.dcolscale_part, idx); } idx += Ktraits::VEC_COLS_PER_LDG; } } } else { static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA."); // Finalize reduction of part dgamma and dbeta for this CTA // by reducing over the rows held across the WARPS_M warps // Assumption: blockSize divides hidden size. enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA }; static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, ""); idx = warp_m * Ktraits::VEC_COLS + tid_r; #pragma unroll for( int it = 0; it < LDGS; it++ ) { dz_sum[it].store_to(smem_wgrad, idx); idx += THREADS_PER_ROW; } __syncthreads(); compute_t cta_dz_sum[NUM_RES]; memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES); for( int it = 0; it < ROWS_PER_CTA; it++ ) { for( int jt = 0; jt < NUM_RES; jt++ ) { cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; } } __syncthreads(); idx = warp_m * Ktraits::VEC_COLS + tid_r; #pragma unroll for( int it = 0; it < LDGS; it++ ) { dzy_sum[it].store_to(smem_wgrad, idx); idx += THREADS_PER_ROW; } __syncthreads(); compute_t cta_dzy_sum[NUM_RES]; memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES); for( int it = 0; it < ROWS_PER_CTA; it++ ) { for( int jt = 0; jt < NUM_RES; jt++ ) { cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; } } compute_t cta_dcolscale_sum[NUM_RES]; if (Has_colscale) { __syncthreads(); idx = warp_m * Ktraits::VEC_COLS + tid_r; #pragma unroll for( int it = 0; it < LDGS; it++ ) { dcolscale_sum[it].store_to(smem_wgrad, idx); idx += THREADS_PER_ROW; } __syncthreads(); memset(cta_dcolscale_sum, 0, sizeof(compute_t) * NUM_RES); for( int it = 0; it < ROWS_PER_CTA; it++ ) { for( int jt = 0; jt < NUM_RES; jt++ ) { cta_dcolscale_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA]; } } } const index_t num_valid_writes = (params.cols - 1 - tidx + Ktraits::THREADS_PER_CTA) / Ktraits::THREADS_PER_CTA; compute_t *dgamma_part = static_cast(params.dgamma_part) + bidm * params.cols + tidx; compute_t *dbeta_part = static_cast(params.dbeta_part) + bidm * params.cols + tidx; compute_t *dcolscale_part = Has_colscale ? static_cast(params.dcolscale_part) + bidm * params.cols + tidx : nullptr; for( int jt = 0; jt < NUM_RES; jt++ ) { if (Is_even_cols || (jt < num_valid_writes)) { *dgamma_part = cta_dzy_sum[jt]; dgamma_part += Ktraits::THREADS_PER_CTA; *dbeta_part = cta_dz_sum[jt]; dbeta_part += Ktraits::THREADS_PER_CTA; if (Has_colscale) { *dcolscale_part = cta_dcolscale_sum[jt]; dcolscale_part += Ktraits::THREADS_PER_CTA; } } } } } template __global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA) void ln_bwd_finalize_kernel(BwdParams params) { using compute_t = typename Kernel_traits::compute_t; using weight_t = typename Kernel_traits::weight_t; using index_t = typename Kernel_traits::index_t; using Reducer = typename Kernel_traits::Reducer; using reduce_t = typename Reducer::Type; Sum sum; enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG }; enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP }; __shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA]; constexpr uint32_t bidm = 0; const uint32_t bidn = blockIdx.x; const uint32_t tidx = threadIdx.x; const uint32_t warp = tidx / THREADS_PER_WARP; const uint32_t lane = tidx % THREADS_PER_WARP; Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_); const uint32_t c = bidn * THREADS_PER_WARP + lane; const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane; constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP; for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) { // Each thread sums over NUM_ELT columns. Vec dbeta_local, dgamma_local, dcolscale_local; memset(&dgamma_local, 0, sizeof(dgamma_local)); memset(&dbeta_local, 0, sizeof(dbeta_local)); if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); } if (Is_even_cols || col < params.cols) { for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) { index_t idx = row * params.cols + col; Vec dbeta_part, dgamma_part, dcolscale_part; dbeta_part.load_from(params.dbeta_part, idx); dgamma_part.load_from(params.dgamma_part, idx); if (Has_colscale) { dcolscale_part.load_from(params.dcolscale_part, idx); } #pragma unroll for( int it = 0; it < NUM_ELT; it++ ) { dgamma_local.data.elt[it] += dgamma_part.data.elt[it]; dbeta_local.data.elt[it] += dbeta_part.data.elt[it]; if (Has_colscale) { dcolscale_local.data.elt[it] += dcolscale_part.data.elt[it]; } } } } void * smem_gamma = smem_; void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE]; void * smem_colscale = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE]; const int write_row = warp; const int write_col = lane ^ write_row; const int write_idx = write_row * THREADS_PER_WARP + write_col; dgamma_local.store_to(smem_gamma, write_idx); dbeta_local.store_to(smem_beta, write_idx); if (Has_colscale) { dcolscale_local.store_to(smem_colscale, write_idx); } __syncthreads(); // It would be probably safe to reuse the first row of smem_beta and smem_gamma void * smem_gamma_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE]; void * smem_beta_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT]; void * smem_colscale_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + 2 * Kernel_traits::SMEM_BYTES_OUTPUT]; // More than one iter iff ROWS_PER_CTA < 32. for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) { const int read_row = lane; const int read_col = w ^ read_row; const int read_idx = read_row * THREADS_PER_WARP + read_col; memset(&dbeta_local, 0, sizeof(dbeta_local)); memset(&dgamma_local, 0, sizeof(dgamma_local)); if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); } // Load beta and gamma transposed if(read_row < Kernel_traits::ROWS_PER_CTA){ dbeta_local.load_from(smem_beta, read_idx); dgamma_local.load_from(smem_gamma, read_idx); if (Has_colscale) { dcolscale_local.load_from(smem_colscale, read_idx); } } // Call reducer on the loaded value(s) and convert. #pragma unroll for( int it = 0; it < NUM_ELT; it++ ) { compute_t b_i = dbeta_local.data.elt[it]; compute_t g_i = dgamma_local.data.elt[it]; b_i = reducer.allreduce(b_i, sum); g_i = reducer.allreduce(g_i, sum); dgamma_local.data.elt[it] = g_i; dbeta_local.data.elt[it] = b_i; if (Has_colscale) { compute_t cs_i = dcolscale_local.data.elt[it]; cs_i = reducer.allreduce(cs_i, sum); dcolscale_local.data.elt[it] = cs_i; } } // Leader stores the result at the current column. if(lane == 0){ dgamma_local.store_to(smem_gamma_out, w); dbeta_local.store_to(smem_beta_out, w); if (Has_colscale) { dcolscale_local.store_to(smem_colscale_out, w); } } } // All writes done. __syncthreads(); // Pack and store: 2-wide stores with half the threads. if (Is_even_cols || col_out * 2 < params.cols) { if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) { using src_t = typename TypeToVec2::Type; using dst_t = typename TypeToVec2::Type; Vec dbeta_vec2, dgamma_vec2, dcolscale_vec2; Vec dbeta_out2, dgamma_out2, dcolscale_out2; dgamma_vec2.load_from(smem_gamma_out, lane); dbeta_vec2.load_from(smem_beta_out, lane); if (Has_colscale) { dcolscale_vec2.load_from(smem_colscale_out, lane); } #pragma unroll for( int it = 0; it < NUM_ELT; it++ ) { dgamma_out2.data.elt[it] = Converter::convert(dgamma_vec2.data.elt[it]); dbeta_out2.data.elt[it] = Converter::convert(dbeta_vec2.data.elt[it]); if (Has_colscale) { dcolscale_out2.data.elt[it] = Converter::convert(dcolscale_vec2.data.elt[it]); } } dgamma_out2.store_to(params.dgamma, col_out); dbeta_out2.store_to(params.dbeta, col_out); if (Has_colscale) { dcolscale_out2.store_to(params.dcolscale, col_out); } } } } } } // namespace layer_norm using namespace layer_norm; template< typename weight_t, typename input_t, typename residual_t, typename output_t, typename compute_t, typename index_t, int HIDDEN_SIZE, int CTAS_PER_ROW, int WARPS_M, int WARPS_N, int BYTES_PER_LDG_MAIN, int BYTES_PER_LDG_FINAL > void launch_(LaunchParams &launch_params, const bool configure_params){ using Kernel_traits = Kernel_traits; bool is_dropout = launch_params.params.dropout_keep_p < 1.f; bool has_colscale = launch_params.params.colscale != nullptr; bool has_subset = launch_params.params.x0_subset != nullptr; bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE; BOOL_SWITCH(is_dropout, IsDropoutConst, [&] { BOOL_SWITCH(has_colscale, HasColscaleConst, [&] { BOOL_SWITCH(has_subset, HasSubsetConst, [&] { BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] { auto kernel = &ln_bwd_kernel; if( configure_params ) { int ctas_per_sm; CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES)); launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW; launch_params.barrier_size = 0; launch_params.workspace_bytes = 0; if(Kernel_traits::CTAS_PER_ROW > 1) { launch_params.barrier_size = 2 * launch_params.params.ctas_per_col; launch_params.workspace_bytes = launch_params.params.ctas_per_col * Kernel_traits::WARPS_M * Kernel_traits::CTAS_PER_ROW * sizeof(typename Kernel_traits::reduce_t) * 2; } return; } if( Kernel_traits::SMEM_BYTES >= 48 * 1024 ) { CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES)); } auto stream = launch_params.stream; auto ctas_per_col = launch_params.params.ctas_per_col; if( Kernel_traits::CTAS_PER_ROW == 1 ) { kernel<<>>(launch_params.params); } else { dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col); dim3 block(Kernel_traits::THREADS_PER_CTA); void *params_ = (void *)&launch_params.params; cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)¶ms_, Kernel_traits::SMEM_BYTES, stream); } using Kernel_traits_f = layer_norm::Kernel_traits_finalize; auto kernel_f = &layer_norm::ln_bwd_finalize_kernel; kernel_f<<>>(launch_params.params); }); }); }); }); }