/****************************************************************************** * Copyright (c) 2024, Tri Dao. ******************************************************************************/ #include "flash_common.hpp" #include "fmha_bwd.hpp" #include "mask.hpp" fmha_bwd_traits get_ck_fmha_bwd_traits(const mask_info &mask, std::string dtype, int head_size, bool has_dropout, bool enable_alibi, bool deterministic) { return fmha_bwd_traits{head_size, head_size, dtype, false, // is_group_mode mask.type, enable_alibi ? bias_enum::alibi : bias_enum::no_bias, false, // has_dbias has_dropout, false, // s_randval deterministic}; } fmha_bwd_args get_ck_fmha_bwd_args(const mask_info &mask, // sizes const int b, const int seqlen_q, const int seqlen_k, const int h, const int h_k, const int hdim, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, c10::optional &alibi_slopes_, const at::Tensor out, const at::Tensor softmax_lse, const at::Tensor dout, at::Tensor dq_acc, at::Tensor d, at::Tensor dq, at::Tensor dk, at::Tensor dv, float softmax_scale, float p_dropout, uint64_t drop_seed, uint64_t drop_offset) { // q: (batch_size, seqlen_q, nheads, hdim) ck_tile::index_t batch_stride_q = q.stride(0); ck_tile::index_t stride_q = q.stride(1); ck_tile::index_t nhead_stride_q = q.stride(2); // k: (batch_size, seqlen_k, nheads_k, hdim) ck_tile::index_t batch_stride_k = k.stride(0); ck_tile::index_t stride_k = k.stride(1); ck_tile::index_t nhead_stride_k = k.stride(2); // v: (batch_size, seqlen_k, nheads_k, hdim) ck_tile::index_t batch_stride_v = v.stride(0); ck_tile::index_t stride_v = v.stride(1); ck_tile::index_t nhead_stride_v = v.stride(2); // o: (batch_size, seqlen_q, nheads, hdim) ck_tile::index_t batch_stride_o = out.stride(0); ck_tile::index_t stride_o = out.stride(1); ck_tile::index_t nhead_stride_o = out.stride(2); // lse: (batch_size, nheads, seqlen_q) ck_tile::index_t batch_stride_lse = softmax_lse.stride(0); ck_tile::index_t nhead_stride_lse = softmax_lse.stride(1); // do: (batch_size, seqlen_q, nheads, hdim) ck_tile::index_t batch_stride_do = dout.stride(0); ck_tile::index_t stride_do = dout.stride(1); ck_tile::index_t nhead_stride_do = dout.stride(2); // d: (batch_size, nheads, seqlen_q) // CK assume d share the same stride with lse // dq: (batch_size, seqlen_q, nheads, hdim) ck_tile::index_t batch_stride_dq = dq.stride(0); ck_tile::index_t stride_dq = dq.stride(1); ck_tile::index_t nhead_stride_dq = dq.stride(2); // dk_expanded: (batch_size, seqlen_k, nheads, hdim) ck_tile::index_t batch_stride_dk = dk.stride(0); ck_tile::index_t stride_dk = dk.stride(1); ck_tile::index_t nhead_stride_dk = dk.stride(2); // dv_expanded: (batch_size, seqlen_k, nheads, hdim) ck_tile::index_t batch_stride_dv = dv.stride(0); ck_tile::index_t stride_dv = dv.stride(1); ck_tile::index_t nhead_stride_dv = dv.stride(2); // dq_acc: (split, batch_size, seqlen_q, nheads, hdim) ck_tile::index_t split_stride_dq_acc = dq_acc.stride(0); ck_tile::index_t batch_stride_dq_acc = dq_acc.stride(1); ck_tile::index_t stride_dq_acc = dq_acc.stride(2); ck_tile::index_t nhead_stride_dq_acc = dq_acc.stride(3); float p_undrop = 1.0 - p_dropout; void *alibi_slopes_ptr = nullptr; ck_tile::index_t stride_alibi_slopes = 0; if (alibi_slopes_.has_value()) { auto alibi_slopes = alibi_slopes_.value(); CHECK_DEVICE(alibi_slopes); TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension"); TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({h}) || alibi_slopes.sizes() == torch::IntArrayRef({b, h})); alibi_slopes_ptr = alibi_slopes.data_ptr(); // alibi_slopes:(batch_size, nheads) or (nhead) stride_alibi_slopes = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0; } return fmha_bwd_args{q.data_ptr(), k.data_ptr(), v.data_ptr(), alibi_slopes_ptr, // bias out.data_ptr(), softmax_lse.data_ptr(), dout.data_ptr(), d.data_ptr(), nullptr, // rand_val dq.data_ptr(), dk.data_ptr(), dv.data_ptr(), nullptr, // dbias dq_acc.data_ptr(), // dq_acc nullptr, // seqstart_q nullptr, // seqstart_k nullptr, // seqlen_k_ptr seqlen_q, seqlen_k, b, seqlen_q, // max_seqlen_q seqlen_k, // max_seqlen_k hdim, // hdim_q hdim, // hdim_v h, // nhead h_k, // nhead_k softmax_scale, stride_q, stride_k, stride_v, stride_alibi_slopes, stride_o, 0, // stride_randval stride_do, stride_dq_acc, stride_dq, stride_dk, stride_dv, 0, // stride_dbias, FA without bias nhead_stride_q, nhead_stride_k, nhead_stride_v, 0, // nhead_stride_bias, FA without bias nhead_stride_o, 0, // nhead_stride_randval nhead_stride_do, nhead_stride_lse, nhead_stride_dq_acc, nhead_stride_dq, nhead_stride_dk, nhead_stride_dv, 0, // nhead_stride_dbias, FA without dbias batch_stride_q, batch_stride_k, batch_stride_v, 0 , // batch_stride_bias, FA without bias batch_stride_o, 0, // batch_stride_randval batch_stride_do, batch_stride_lse, batch_stride_dq_acc, batch_stride_dq, batch_stride_dk, batch_stride_dv, 0 , // batch_stride_dbias, FA without dbias split_stride_dq_acc, mask.left, mask.right, static_cast(mask.type), p_dropout, p_undrop, {drop_seed, drop_offset}}; } std::vector mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size, 8) const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &softmax_lse, // b x h x seqlen_q c10::optional &dq_, // batch_size x seqlen_q x num_heads x head_size c10::optional &dk_, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &dv_, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &alibi_slopes_, // num_heads or batch_size x num_heads const float p_dropout, // probability to drop const float softmax_scale, const bool is_causal, int window_size_left, int window_size_right, const float /*softcap*/, const bool deterministic, c10::optional gen_, c10::optional &rng_state) { #ifdef FLASHATTENTION_DISABLE_BACKWARD TORCH_CHECK(false, "This flash attention build does not support backward."); #endif if (is_causal) { window_size_right = 0; } bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentHIPStream().stream(); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); std::string q_dtype_str = q_dtype == torch::kFloat16 ? "fp16" : "bf16"; CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; const int seqlen_q = sizes[1]; const int num_heads = sizes[2]; const int head_size = sizes[3]; const int seqlen_k = k.size(1); const int num_heads_k = k.size(2); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size <= 256, "CK FlashAttention backward only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (window_size_left >= seqlen_k) { window_size_left = -1; } if (window_size_right >= seqlen_k) { window_size_right = -1; } mask_info mask; if (is_causal) { std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + "0"; mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // casual } else if (window_size_left == -1 && window_size_right == -1) { mask = mask_info::decode("0", seqlen_q, seqlen_k); // no mask } else { // Local is the more general case where window_size_right >= 0 or window_size_left >= 0. std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + std::to_string(window_size_right); mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // local } // q, k, v, out had been padded in mha_fwd // dq_, dk_, dv_ are also padded tensor CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size); at::Tensor dq, dk, dv; if (dq_.has_value()) { dq = dq_.value(); TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); CHECK_DEVICE(dq); TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size); } else { dq = torch::empty_like(q); } if (dk_.has_value()) { dk = dk_.value(); TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); CHECK_DEVICE(dk); TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size); } else { dk = torch::empty_like(k); } if (dv_.has_value()) { dv = dv_.value(); TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); CHECK_DEVICE(dv); TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size); } else { dv = torch::empty_like(v); } // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor dq_accum; if (!deterministic) { dq_accum = torch::zeros({1, batch_size, seqlen_q, num_heads, head_size}, opts.dtype(at::kFloat)); } else { const ck_tile::index_t kN0 = head_size <= 128 ? 128 : 64; const ck_tile::index_t nsplits = ck_tile::integer_divide_ceil(seqlen_k, kN0); dq_accum = torch::zeros({nsplits, batch_size, seqlen_q, num_heads, head_size}, opts.dtype(at::kFloat)); } at::Tensor dk_expanded, dv_expanded; if (num_heads_k != num_heads) { // MQA / GQA dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); } else { dk_expanded = dk; dv_expanded = dv; } auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); uint64_t drop_seed = 1, drop_offset = 0; int64_t counter_offset = batch_size * num_heads * ck_tile::get_warp_size(); if (rng_state.has_value()) { uint64_t* d = reinterpret_cast(rng_state.value().data_ptr()); drop_seed = d[0]; drop_offset = d[1]; } else if(is_dropout) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); auto philox_args = gen->philox_cuda_state(counter_offset); std::tie(drop_seed, drop_offset) = flash::unpack(philox_args); } if (seqlen_q > 0) { ck_tile::stream_config stream_config{stream}; auto traits = get_ck_fmha_bwd_traits(mask, q_dtype_str, head_size, is_dropout, alibi_slopes_.has_value(), deterministic); auto args = get_ck_fmha_bwd_args( mask, batch_size, seqlen_q, seqlen_k, num_heads, num_heads_k, head_size, q, k, v, alibi_slopes_, out, softmax_lse, dout, dq_accum, softmax_d, dq, dk_expanded, dv_expanded, softmax_scale, p_dropout, drop_seed, drop_offset); float t = fmha_bwd(traits, args, stream_config); TORCH_CHECK(t >= 0, "invalid argument for fmha_bwd"); } else { // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0. dk_expanded.zero_(); dv_expanded.zero_(); softmax_d.zero_(); } // For MQA/GQA we need to sum dK and dV across the groups if (num_heads_k != num_heads) { at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); } return { dq, dk, dv, softmax_d }; }