#include #include "ATen/cuda/CUDAContext.h" #include "ln.h" /* Supported Type combinations: input residual compute weights output ============================================ fp32 fp32 fp32 fp32 fp32 fp16 fp32 fp32 fp32 fp16 fp16 fp16 fp32 fp32 fp16 bf16 fp32 fp32 fp32 bf16 bf16 bf16 fp32 fp32 bf16 fp16 fp16 fp32 fp16 fp16 bf16 bf16 fp32 bf16 bf16 Remarks: Output type = Input type Compute always in FP32 */ namespace layer_norm { // Create registries and provide runtime versions of config hash functions. FwdRegistry FWD_FUNCS; BwdRegistry BWD_FUNCS; //////////////////////////////////////////////////////////////////////////////////////////////////// uint32_t get_type_id(torch::Dtype dtype){ if( dtype == torch::kFloat16 ) { return TypeId::Value; } else if( dtype == torch::kBFloat16 ) { return TypeId::Value; } else if( dtype == torch::kFloat32 ) { return TypeId::Value; } else { TORCH_CHECK(false, "Type not supported: ", dtype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) { using namespace layer_norm; uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8); uint64_t launcher_key = (type_key << 32) | hidden_size; return launcher_key; } } // namespace layer_norm //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::FWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::BWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_fwd(const at::Tensor &x0, // Input: BxSxhidden_size c10::optional &x1_, // Residual: BxSxhidden_size const at::Tensor &gamma, // hidden_size const at::Tensor &beta, // hidden_size c10::optional &rowscale_, // BxS const float dropout_p, const float epsilon, c10::optional gen_, bool residual_in_fp32 ) { auto itype = x0.scalar_type(); auto rtype = x1_.has_value() ? x1_.value().scalar_type() : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type()); auto wtype = gamma.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; TORCH_CHECK(beta.scalar_type() == wtype); TORCH_CHECK(x0.is_cuda()) TORCH_CHECK(gamma.is_cuda()) TORCH_CHECK(beta.is_cuda()) TORCH_CHECK(x0.is_contiguous()); auto sizes = x0.sizes(); TORCH_CHECK(sizes.size() == 2); const int rows = sizes[0]; const int cols = sizes[1]; auto hidden_size = gamma.numel(); if (x1_.has_value()) { auto x1 = x1_.value(); TORCH_CHECK(x1.is_cuda()) TORCH_CHECK(x1.is_contiguous()); TORCH_CHECK(x1.sizes() == sizes); } if (rowscale_.has_value()) { auto rowscale = rowscale_.value(); TORCH_CHECK(rowscale.is_cuda()) TORCH_CHECK(rowscale.is_contiguous()); TORCH_CHECK(rowscale.sizes() == std::vector{rows}); TORCH_CHECK(rowscale.scalar_type() == itype); } TORCH_CHECK(gamma.sizes() == beta.sizes()); TORCH_CHECK(hidden_size == cols); TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144)); TORCH_CHECK(epsilon >= 0.f); auto opts = x0.options(); bool save_x = x1_.has_value() || (dropout_p > 0.f) || (itype != rtype); at::Tensor x; if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); } at::Tensor dmask; if (dropout_p > 0.f) { dmask = torch::empty(sizes, opts.dtype(mtype)); }; auto z = torch::empty(sizes, opts.dtype(otype)); auto mu = torch::empty({ rows }, opts.dtype(ctype)); auto rsigma = torch::empty({ rows }, opts.dtype(ctype)); layer_norm::LaunchParams launch_params; launch_params.props = at::cuda::getCurrentDeviceProperties(); launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr; launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr; auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); // Request the kernel launcher. auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); // Query the kernel-specific launch parameters. launcher(launch_params, true); at::Tensor workspace, barrier; // Set the kernel runtime parameters. layer_norm::FwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x0 = x0.data_ptr(); params.x = save_x ? x.data_ptr() : nullptr; params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma.data_ptr(); params.beta = beta.data_ptr(); params.z = z.data_ptr(); params.epsilon = epsilon; params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); if (dropout_p > 0.f) { // number of times random will be generated per thread, to offset philox counter in thc random // state int64_t counter_offset = launch_params.elts_per_thread; // See Note [Acquire lock when using random generators] { std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } } if( launch_params.barrier_size > 0 ) { auto options = x0.options(); barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } // Launch the kernel. launcher(launch_params, false); return { z, x, dmask, mu, rsigma }; } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_bwd(const at::Tensor &dz, // BxSxhidden_size const at::Tensor &x, // BxSxhidden_size c10::optional &dmask_, // BxSxhidden_size const at::Tensor &mu, // BxS, FP32! const at::Tensor &rsigma, // BxS, FP32! const at::Tensor &gamma, // hidden_size c10::optional &rowscale_, // BxS const float dropout_p, const bool has_residual ) { auto itype = dz.scalar_type(); auto rtype = x.scalar_type(); auto wtype = gamma.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); } TORCH_CHECK(dz.dtype() == otype); TORCH_CHECK(mu.dtype() == ctype); TORCH_CHECK(rsigma.dtype() == ctype); TORCH_CHECK(x.is_cuda()); TORCH_CHECK(dz.is_cuda()); TORCH_CHECK(mu.is_cuda()); TORCH_CHECK(rsigma.is_cuda()); TORCH_CHECK(gamma.is_cuda()); TORCH_CHECK(x.is_contiguous()); TORCH_CHECK(dz.is_contiguous()); auto sizes = x.sizes(); TORCH_CHECK(sizes.size() == 2); TORCH_CHECK(dz.sizes() == sizes); auto rows = sizes[0]; auto cols = sizes[1]; if (dmask_.has_value()) { auto dmask = dmask_.value(); TORCH_CHECK(dmask.dtype() == mtype); TORCH_CHECK(dmask.is_cuda()); TORCH_CHECK(dmask.is_contiguous()); TORCH_CHECK(dmask.sizes() == sizes); } if (rowscale_.has_value()) { auto rowscale = rowscale_.value(); TORCH_CHECK(rowscale.is_cuda()) TORCH_CHECK(rowscale.is_contiguous()); TORCH_CHECK(rowscale.sizes() == std::vector{rows}); TORCH_CHECK(rowscale.scalar_type() == itype); } auto hidden_size = gamma.numel(); TORCH_CHECK(hidden_size == cols); TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144)); TORCH_CHECK(mu.numel() == rows); TORCH_CHECK(mu.sizes() == rsigma.sizes()); TORCH_CHECK(gamma.numel() == cols); auto opts = x.options(); auto dx0 = torch::empty_like(x, opts.dtype(itype)); at::Tensor dx1; if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); } auto dgamma = torch::empty_like(gamma); auto dbeta = torch::empty_like(gamma); layer_norm::LaunchParams launch_params; launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); launch_params.props = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr; launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr; auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); launcher(launch_params, true, /*prenorm=*/false); auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); at::Tensor workspace, barrier; layer_norm::BwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x = x.data_ptr(); params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma.data_ptr(); params.dz = dz.data_ptr(); params.dx0 = dx0.data_ptr(); params.dbeta = dbeta.data_ptr(); params.dgamma = dgamma.data_ptr(); params.dbeta_part = dbeta_part.data_ptr(); params.dgamma_part = dgamma_part.data_ptr(); params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); if( launch_params.barrier_size > 0 ) { // TODO Any way to avoid this? barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } launcher(launch_params, false, /*prenorm=*/false); return { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part }; } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_prenorm_bwd(const at::Tensor &dz, // BxSxhidden_size const at::Tensor &dx, // BxSxhidden_size const at::Tensor &x, // BxSxhidden_size c10::optional &dmask_, // BxSxhidden_size const at::Tensor &mu, // BxS, FP32! const at::Tensor &rsigma, // BxS, FP32! const at::Tensor &gamma, // hidden_size c10::optional &rowscale_, // BxS const float dropout_p, const bool has_residual ) { auto itype = dz.scalar_type(); auto rtype = x.scalar_type(); auto wtype = gamma.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); } TORCH_CHECK(dz.dtype() == otype); TORCH_CHECK(dx.dtype() == rtype); TORCH_CHECK(mu.dtype() == ctype); TORCH_CHECK(rsigma.dtype() == ctype); TORCH_CHECK(x.is_cuda()); TORCH_CHECK(dz.is_cuda()); TORCH_CHECK(dx.is_cuda()); TORCH_CHECK(mu.is_cuda()); TORCH_CHECK(rsigma.is_cuda()); TORCH_CHECK(gamma.is_cuda()); TORCH_CHECK(x.is_contiguous()); TORCH_CHECK(dz.is_contiguous()); TORCH_CHECK(dx.is_contiguous()); auto sizes = x.sizes(); TORCH_CHECK(sizes.size() == 2); TORCH_CHECK(dz.sizes() == sizes); TORCH_CHECK(dx.sizes() == sizes); auto rows = sizes[0]; auto cols = sizes[1]; if (dmask_.has_value()) { auto dmask = dmask_.value(); TORCH_CHECK(dmask.dtype() == mtype); TORCH_CHECK(dmask.is_cuda()); TORCH_CHECK(dmask.is_contiguous()); TORCH_CHECK(dmask.sizes() == sizes); } if (rowscale_.has_value()) { auto rowscale = rowscale_.value(); TORCH_CHECK(rowscale.is_cuda()) TORCH_CHECK(rowscale.is_contiguous()); TORCH_CHECK(rowscale.sizes() == std::vector{rows}); TORCH_CHECK(rowscale.scalar_type() == itype); } auto hidden_size = gamma.numel(); TORCH_CHECK(hidden_size == cols); TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144)); TORCH_CHECK(mu.numel() == rows); TORCH_CHECK(mu.sizes() == rsigma.sizes()); TORCH_CHECK(gamma.numel() == cols); auto opts = x.options(); auto dx0 = torch::empty_like(x, opts.dtype(itype)); at::Tensor dx1; if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); } auto dgamma = torch::empty_like(gamma); auto dbeta = torch::empty_like(gamma); layer_norm::LaunchParams launch_params; launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); launch_params.props = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr; launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr; auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); launcher(launch_params, true, /*prenorm=*/true); auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); at::Tensor workspace, barrier; layer_norm::BwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x = x.data_ptr(); params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma.data_ptr(); params.dz = dz.data_ptr(); params.dx = dx.data_ptr(); params.dx0 = dx0.data_ptr(); params.dbeta = dbeta.data_ptr(); params.dgamma = dgamma.data_ptr(); params.dbeta_part = dbeta_part.data_ptr(); params.dgamma_part = dgamma_part.data_ptr(); params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); if( launch_params.barrier_size > 0 ) { // TODO Any way to avoid this? barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } launcher(launch_params, false, /*prenorm=*/true); return { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part }; } //////////////////////////////////////////////////////////////////////////////////////////////////// PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.doc() = "CUDA DropoutAddLayerNorm"; m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel"); m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel"); m.def("dropout_add_ln_prenorm_bwd", &dropout_add_ln_prenorm_bwd, "Run Dropout + Add + LayerNorm (PreNorm version) backward kernel"); }