# Copyright (c) 2023, Tri Dao. import math import pytest import torch import torch.nn.functional as F from einops import rearrange from flash_attn.layers.rotary import RotaryEmbedding, apply_rotary_emb_func, apply_rotary_emb_qkv_ from transformers.models.gpt_neox.modeling_gpt_neox import RotaryEmbedding as RotaryEmbeddingNeoX from transformers.models.gpt_neox.modeling_gpt_neox import ( apply_rotary_pos_emb as apply_rotary_pos_emb_neox, ) from transformers.models.gptj.modeling_gptj import apply_rotary_pos_emb as apply_rotary_pos_emb_gptj from transformers.models.gptj.modeling_gptj import fixed_pos_embedding # NeoX-style rotary embedding @pytest.mark.parametrize("seqlen_offset", [0, 711]) @pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0]) def test_rotary(rotary_emb_fraction, seqlen_offset): device = "cuda" dtype = torch.float16 rtol, atol = (1e-3, 5e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen_total = 2048 seqlen = seqlen_total - seqlen_offset nheads = 16 headdim = 128 rotary_dim = int(headdim * rotary_emb_fraction) qkv = torch.randn( batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True ) qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace rotary = RotaryEmbedding(rotary_dim, device=device) rotary_neox = RotaryEmbeddingNeoX(rotary_dim, seqlen_total, device=device) # Doesn't matter what tensor we pass in, rotary_neox only uses the device of the tensor cos_neox, sin_neox = rotary_neox(qkv, seq_len=seqlen_total) cos_neox, sin_neox = cos_neox.to(dtype=dtype), sin_neox.to(dtype=dtype) q_pt = ( rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d") .detach() .clone() .requires_grad_(True) ) k_pt = ( rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d") .detach() .clone() .requires_grad_(True) ) q_neox, k_neox = apply_rotary_pos_emb_neox(q_pt, k_pt, cos_neox, sin_neox, offset=seqlen_offset) out = rotary(qkv, seqlen_offset=seqlen_offset) assert torch.allclose( rotary._cos_cached, cos_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol ) assert torch.allclose( rotary._sin_cached, sin_neox[..., : rotary_dim // 2].to(dtype=dtype), rtol=rtol, atol=atol ) assert torch.allclose( rearrange(q_neox, "b h s d -> b s h d"), out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol ) assert torch.allclose( rearrange(k_neox, "b h s d -> b s h d"), out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol ) assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:]) assert torch.equal(out[:, :, 2], qkv_og[:, :, 2]) g = torch.randn_like(out) g_og = g.clone().detach() # Our implementation modifies g inplace out.backward(g) q_neox.backward(rearrange(g_og[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")) k_neox.backward(rearrange(g_og[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")) assert torch.allclose( rearrange(q_pt.grad, "b h s d -> b s h d"), qkv.grad[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol, ) assert torch.allclose( rearrange(k_pt.grad, "b h s d -> b s h d"), qkv.grad[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol, ) assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:]) assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2]) # GPT-J-style rotary embedding @pytest.mark.parametrize("seqlen_offset", [0, 711]) @pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0]) def test_rotary_interleaved(rotary_emb_fraction, seqlen_offset): device = "cuda" dtype = torch.float16 rtol, atol = (1e-3, 5e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen_total = 2048 seqlen = seqlen_total - seqlen_offset nheads = 16 headdim = 128 rotary_dim = int(headdim * rotary_emb_fraction) qkv = torch.randn( batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True ) qkv_og = qkv.clone().detach() # Our implementation modifies qkv inplace rotary = RotaryEmbedding(rotary_dim, interleaved=True, device=device) sincos_gptj = fixed_pos_embedding(qkv[..., :rotary_dim], seq_dim=1, seq_len=seqlen_total) sincos_gptj = tuple(x.to(dtype=dtype) for x in sincos_gptj) q_pt = qkv[:, :, 0, :, :rotary_dim].detach().clone().requires_grad_(True) k_pt = qkv[:, :, 1, :, :rotary_dim].detach().clone().requires_grad_(True) q_gptj = apply_rotary_pos_emb_gptj(q_pt, sincos_gptj, offset=seqlen_offset) k_gptj = apply_rotary_pos_emb_gptj(k_pt, sincos_gptj, offset=seqlen_offset) out = rotary(qkv, seqlen_offset=seqlen_offset) assert torch.allclose(rotary._cos_cached, sincos_gptj[1], rtol=rtol, atol=atol) assert torch.allclose(rotary._sin_cached, sincos_gptj[0], rtol=rtol, atol=atol) assert torch.allclose(q_gptj, out[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol) assert torch.allclose(k_gptj, out[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol) assert torch.equal(out[:, :, 0:2, :, rotary_dim:], qkv_og[:, :, 0:2, :, rotary_dim:]) assert torch.equal(out[:, :, 2], qkv_og[:, :, 2]) g = torch.randn_like(out) g_og = g.clone().detach() # Our implementation modifies g inplace out.backward(g) q_gptj.backward(g_og[:, :, 0, :, :rotary_dim]) k_gptj.backward(g_og[:, :, 1, :, :rotary_dim]) assert torch.allclose(q_pt.grad, qkv.grad[:, :, 0, :, :rotary_dim], rtol=rtol, atol=atol) assert torch.allclose(k_pt.grad, qkv.grad[:, :, 1, :, :rotary_dim], rtol=rtol, atol=atol) assert torch.equal(qkv.grad[:, :, 0:2, :, rotary_dim:], g_og[:, :, 0:2, :, rotary_dim:]) assert torch.equal(qkv.grad[:, :, 2], g_og[:, :, 2])