/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include "cute/tensor.hpp" #include #include #include #include #include "cutlass/arch/barrier.h" #include "seqlen.h" #include "utils.h" namespace flash { using namespace cute; template class FlashAttnBwdPostprocessConvertdQ { public: // Type Aliases using TileShape_MK = TileShape_MK_; using ArchTag = ArchTag_; static_assert(ArchTag::kMinComputeCapability >= 75); static constexpr bool IsSm90 = ArchTag::kMinComputeCapability >= 90; static constexpr uint32_t MaxThreadsPerBlock = kNThreads; static constexpr uint32_t MinBlocksPerMultiprocessor = 2; static constexpr int kBlockM = get<0>(TileShape_MK{}); static constexpr int kHeadDim = get<1>(TileShape_MK{}); static_assert(!IsSm90 || kNThreads % cutlass::NumThreadsPerWarpGroup == 0, "kNThreads must be a multiple of NumThreadsPerWarpGroup"); static constexpr int NumdQWarpGgroups = kNThreads / cutlass::NumThreadsPerWarpGroup; using R2SLayoutAtomdQaccum = std::conditional_t< IsSm90, Layout, Int>>, Layout>> >; using R2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom, ElementAccum>{}, R2SLayoutAtomdQaccum{}, Layout>>{})); // Val layout, 1 or 4 vals per read using G2SLayoutAtomdQaccum = Layout>>; // UniversalCopy instead of AutoVectorizingCopyWithAssumedAlignment as the latter generates cp.async instructions using G2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom, ElementAccum>{}, G2SLayoutAtomdQaccum{}, Layout>{})); // Val layout, 4 vals per read // We don't do bound checking for the gmem -> smem load so we just assert here. static_assert(IsSm90 || (kBlockM * kHeadDim) % (kNThreads * 4) == 0); static constexpr int SmemdQaccumSize = size(TileShape_MK{}); using SmemLayoutdQaccumFlat = Layout>>; using SmemLayoutdQaccum = std::conditional_t< IsSm90, Layout, Int>>, Layout>> >; // We can't just use kHeadDim here. E.g. if MMA shape is 64 x 96 but split across 2 WGs, // then setting kBlockKSmem to 32 will cause "Static shape_div failure". // We want to treat it as 64 x 48, so kBlockKSmem should be 16. static constexpr int MmaShapeN = get<1>(typename TiledMma::AtomShape_MNK{}); static constexpr int kBlockKSmem = MmaShapeN % 64 == 0 ? 64 : (MmaShapeN % 32 == 0 ? 32 : 16); static constexpr int kSwizzle = kBlockKSmem == 64 ? 3 : (kBlockKSmem == 32 ? 2 : 1); using SmemLayoutAtomdQ = decltype(composition(Swizzle{}, Layout, Int>, Stride, _1>>{})); using SmemLayoutdQ = decltype(tile_to_shape(SmemLayoutAtomdQ{}, TileShape_MK{})); using SmemLayoutdQt = decltype(cute::composition(SmemLayoutdQ{}, make_layout(make_shape(get<1>(TileShape_MK{}), get<0>(TileShape_MK{})), make_stride(Int(TileShape_MK{})>{}, _1{})))); using SmemCopyAtomdQ = Copy_Atom< std::conditional_t< IsSm90, std::conditional_t, AutoVectorizingCopyWithAssumedAlignment<128> >, Element>; static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element); static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad"); static constexpr int kGmemThreadsPerRow = cutlass::gcd(kHeadDim / kGmemElemsPerLoad, int(MaxThreadsPerBlock)); static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow"); using GmemLayoutAtom = Layout, Int>, Stride, _1>>; using GmemTiledCopy = decltype( make_tiled_copy(Copy_Atom, Element>{}, GmemLayoutAtom{}, Layout>>{})); // Val layout, 8 or 16 vals per load struct SharedStorage : cute::aligned_struct<128> { cute::array_aligned> smem_dqacc; cute::array_aligned> smem_dq; alignas(16) cutlass::arch::ClusterTransactionBarrier barrier_dQaccum; }; static constexpr int SharedStorageSize = sizeof(SharedStorage); using ShapedQ = cute::Shape; // (seqlen_q, d, head, batch) using StridedQ = cute::Stride; using ShapedQaccum = cute::Shape; // (seqlen_q * d, head, batch) using StridedQaccum = cute::Stride<_1, int64_t, int64_t>; // Device side arguments struct Arguments { ElementAccum const* ptr_dQaccum; ShapedQaccum const shape_dQaccum; StridedQaccum const stride_dQaccum; Element* ptr_dQ; ShapedQ const shape_dQ; StridedQ const stride_dQ; float const softmax_scale; int const* cu_seqlens = nullptr; int const* seqused = nullptr; }; // Kernel entry point API struct Params { ElementAccum const* ptr_dQaccum; ShapedQaccum const shape_dQaccum; StridedQaccum const stride_dQaccum; Element* ptr_dQ; ShapedQ const shape_dQ; StridedQ const stride_dQ; float const softmax_scale; int const* cu_seqlens = nullptr; int const* seqused = nullptr; }; // Convert to underlying arguments. In this case, a simple copy for the aliased type. static Params to_underlying_arguments(Arguments const& args) { return { args.ptr_dQaccum, args.shape_dQaccum, args.stride_dQaccum, args.ptr_dQ, args.shape_dQ, args.stride_dQ, args.softmax_scale, args.cu_seqlens, args.seqused }; } CUTLASS_DEVICE void operator()(Params const& params, char* smem_buf) { static constexpr int kBlockM = get<0>(TileShape_MK{}); SharedStorage& shared_storage = *reinterpret_cast(smem_buf); Tensor sdQaccum = make_tensor(make_smem_ptr(shared_storage.smem_dqacc.data()), SmemLayoutdQaccum{}); Tensor sdQaccum_flat = make_tensor(make_smem_ptr(shared_storage.smem_dqacc.data()), SmemLayoutdQaccumFlat{}); Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.smem_dq.data()), SmemLayoutdQ{}); Tensor sdQt = make_tensor(make_smem_ptr(shared_storage.smem_dq.data()), SmemLayoutdQt{}); int const thread_idx = threadIdx.x; int const m_block = blockIdx.x; int const bidh = blockIdx.y; int const bidb = blockIdx.z; flash::SeqlenInfo seqlen_info(bidb, size<0>(params.shape_dQ), params.cu_seqlens, params.seqused); bool const is_varlen = params.cu_seqlens; if (is_varlen && m_block * kBlockM >= seqlen_info.seqlen) { return; } // Step 1: load dQaccum from gmem to smem Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast(params.ptr_dQaccum)), params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0); Tensor gdQaccum = local_tile(domain_offset(make_coord(seqlen_info.offset_padded * kHeadDim), mdQaccum), Shape>{}, make_coord(m_block)); // (M * K) if constexpr (IsSm90) { // Use BulkCopy static constexpr uint32_t TmaTransactionBytesdQaccum = static_cast(size(SmemLayoutdQaccumFlat{}) * cute::sizeof_bits_v / 8); auto bulk_copy = Copy_Traits{}; // if (thread0()) { print(gdQaccum); printf("\n"); print(sdQaccum_flat); printf("\n"); } if (thread_idx == 0) { shared_storage.barrier_dQaccum.init(1 /*numThreads*/); shared_storage.barrier_dQaccum.arrive_and_expect_tx(TmaTransactionBytesdQaccum); copy(bulk_copy.with(*reinterpret_cast(&shared_storage.barrier_dQaccum)), gdQaccum, sdQaccum_flat); } __syncthreads(); shared_storage.barrier_dQaccum.wait(0); } else { G2STiledCopydQaccum g2s_tiled_copy_dQaccum; auto g2s_thr_copy_dQaccum = g2s_tiled_copy_dQaccum.get_thread_slice(thread_idx); Tensor tdQgdQaccumg2s = g2s_thr_copy_dQaccum.partition_S(gdQaccum); Tensor tdQsdQaccumg2s = g2s_thr_copy_dQaccum.partition_D(sdQaccum); cute::copy(g2s_tiled_copy_dQaccum, tdQgdQaccumg2s, tdQsdQaccumg2s); __syncthreads(); } // __syncthreads(); if (cute::thread0()) { print_tensor(sdQaccum); } // Step 2: Load dQaccum from smem to register, then convert fp32 -> fp16/bf16 R2STiledCopydQaccum s2r_tiled_copy_dQaccum; auto s2r_thr_copy_dQaccum = s2r_tiled_copy_dQaccum.get_thread_slice(thread_idx); Tensor tdQsdQaccum = s2r_thr_copy_dQaccum.partition_S(sdQaccum); TiledMma tiled_mma_dQ; Tensor taccdQrdQaccum = partition_fragment_C(tiled_mma_dQ, select(TileShape_MK{})); // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 1) { print(tiled_mma_dQ); printf("\n"); } // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 1) { print(tdQsdQaccum); } // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 1) { print(taccdQrdQaccum); } CUTE_STATIC_ASSERT_V(size(taccdQrdQaccum) == size(tdQsdQaccum)); Tensor tdQrdQaccum = s2r_thr_copy_dQaccum.retile_D(taccdQrdQaccum); cute::copy(s2r_tiled_copy_dQaccum, tdQsdQaccum, tdQrdQaccum); #pragma unroll for (int i = 0; i < size(taccdQrdQaccum); ++i) { taccdQrdQaccum(i) *= params.softmax_scale; } // Convert tdQrdQ from fp32 to fp16 Tensor rdQ = make_tensor_like(taccdQrdQaccum); flash::convert_type_out(taccdQrdQaccum, rdQ); // Step 3: Copy dQ from register to smem auto smem_tiled_copy_dQ = make_tiled_copy_C(SmemCopyAtomdQ{}, tiled_mma_dQ); auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(thread_idx); Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N) // if (cute::thread0()) { print(smem_tiled_copy_dQ); } // if (cute::thread0()) { print(smem_thr_copy_dQ); } // if (cute::thread0()) { print(sdQ); } Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(cute::conditional_return(sdQ, sdQt)); // ((Atom,AtomNum),PIPE_M,PIPE_N) cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ); __syncthreads(); // Step 4: Copy dQ from smem to register to prepare for coalesced write to gmem Tensor mdQ = make_tensor(make_gmem_ptr(params.ptr_dQ), params.shape_dQ, params.stride_dQ)(_, _, bidh, !is_varlen ? bidb : 0); Tensor gdQ = local_tile(domain_offset(make_coord(seqlen_info.offset, _0{}), mdQ), TileShape_MK{}, make_coord(m_block, _0{})); // (M, K) GmemTiledCopy gmem_tiled_copy_dQ; auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(thread_idx); Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N) Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ); Tensor tdQrdQ = make_fragment_like(tdQsdQ); Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cute::make_identity_tensor(TileShape_MK{})); Tensor tdQpdQ = make_tensor(make_shape(size<2>(tdQgdQ))); #pragma unroll for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(_0{}, _0{}, k)) < get<1>(params.shape_dQ); } // Need to check OOB when reading from smem if kBlockM isn't evenly tiled static constexpr bool EvenM = kBlockM % CUTE_STATIC_V(size<0>(GmemLayoutAtom{})) == 0; flash::copy( gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ, tdQcdQ, tdQpdQ, kBlockM); // Step 5: Copy dQ from register to gmem // Clear_OOB_K must be false since we don't want to write zeros to gmem flash::copy( gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, std::min(seqlen_info.seqlen - m_block * kBlockM, kBlockM) ); } }; } // namespace flash