# Copyright (c) 2023, Tri Dao. import time import torch import pytest from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.btlm import btlm_config_to_gpt2_config, remap_state_dict_hf_btlm from flash_attn.utils.pretrained import state_dict_from_pretrained from flash_attn.utils.generation import update_graph_cache @pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"]) def test_btlm_state_dict(model_name): config = btlm_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow state_dict = model.state_dict() assert len(state_dict.keys()) == len(pretrained_state_dict.keys()) assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"]) def test_btlm_optimized(model_name): """Check that our implementation of Btlm (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = "cuda" config = btlm_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) config.fused_bias_fc = True config.fused_dropout_add_ln = True config.residual_in_fp32 = True pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device ) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Without device_map, the model is loaded on the CPU, which is very slow # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB model_ref = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) model_ref.eval() with torch.no_grad(): out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True, ) model_hf.eval() with torch.no_grad(): out_hf = model_hf.transformer(input_ids).last_hidden_state logits_hf = model_hf(input_ids).logits del model_hf print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item() @pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"]) def test_btlm_generation(model_name): dtype = torch.float16 device = "cuda" config = btlm_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) config.fused_bias_fc = True config.fused_dropout_add_ln = True config.residual_in_fp32 = True tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) eos_token_id = tokenizer.eos_token_id torch.manual_seed(0) batch_size = 1 seqlen = 2048 max_length = 2048 + 150 input_ids = torch.randint( 0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device ) model_hf = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True ) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_hf # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB model_ref = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) model_ref.eval() with torch.no_grad(): logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device) del model_ref pretrained_state_dict = remap_state_dict_hf_btlm(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict) model.eval() model(input_ids) # Warm up print("Without CUDA graph") torch.cuda.synchronize() start = time.time() out = model.generate( input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, return_dict_in_generate=True, output_scores=True, enable_timing=True, teacher_outputs=out_hf.sequences, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print("With CUDA graph") torch.cuda.synchronize() start = time.time() out_cg = model.generate( input_ids=input_ids, max_length=max_length, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=True, teacher_outputs=out_hf.sequences, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") with torch.no_grad(): logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1] logits_hf = torch.stack(out_hf.scores, dim=1) logits = torch.stack(out.scores, dim=1) logits_cg = torch.stack(out_cg.scores, dim=1) del model hf_error = (logits_hf - logits_ref).abs().max().item() print(f"HF fp16 logits max diff: {hf_error}") print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }") print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }") assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error assert (logits - logits_ref).abs().max().item() < 2 * hf_error assert torch.equal(logits_cg, logits) @pytest.mark.parametrize("model_name", ["cerebras/btlm-3b-8k-base"]) def test_btlm_init(model_name): dtype = torch.float32 device = "cuda" btlm_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) config = btlm_config_to_gpt2_config(btlm_config) model = GPTLMHeadModel(config, device=device, dtype=dtype) model_ref = AutoModelForCausalLM.from_config(btlm_config, trust_remote_code=True).to(device) assert model.transformer.embeddings.word_embeddings.weight.mean().abs() < 1e-4 assert ( model.transformer.embeddings.word_embeddings.weight.std() - model_ref.transformer.wte.weight.std() ).abs() < 1e-4 assert model.lm_head.weight.mean().abs() < 1e-4 assert (model.lm_head.weight.std() - model_ref.lm_head.weight.std()).abs() < 1e-4 for l in range(config.n_layer): assert model.transformer.layers[l].mixer.Wqkv.weight.mean().abs() < 1e-4 assert ( model.transformer.layers[l].mixer.Wqkv.weight.std() - model_ref.transformer.h[l].attn.c_attn.weight.std() ).abs() < 1e-4 assert model.transformer.layers[l].mixer.Wqkv.bias.abs().max() == 0.0 assert model.transformer.layers[l].mixer.out_proj.weight.mean().abs() < 1e-4 assert ( model.transformer.layers[l].mixer.out_proj.weight.std() - model_ref.transformer.h[l].attn.c_proj.weight.std() ).abs() < 1e-4 assert model.transformer.layers[l].mixer.out_proj.bias.abs().max() == 0.0 assert model.transformer.layers[l].mlp.fc1.weight.mean().abs() < 1e-4 assert ( model.transformer.layers[l].mlp.fc1.weight.std() - model_ref.transformer.h[l].mlp.c_fc.weight.std() ).abs() < 1e-4 assert model.transformer.layers[l].mlp.fc1.bias.abs().max() == 0.0 assert model.transformer.layers[l].mlp.fc2.weight.mean().abs() < 1e-4 assert ( model.transformer.layers[l].mlp.fc2.weight.std() - model_ref.transformer.h[l].mlp.c_proj.weight.std() ).abs() < 1e-4 assert model.transformer.layers[l].mlp.fc2.bias.abs().max() == 0.0