/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include "cutlass/fast_math.h" #include "cutlass/arch/barrier.h" #include "named_barrier.hpp" namespace flash { /////////////////////////////////////////////////////////////////////////////// // Host side kernel arguments struct TileSchedulerArguments { // num_head is num_head_q if not PackGQA, else num_head_k int const num_blocks, num_head, num_batch, num_splits; int const qhead_per_khead; int const seqlen; // Only used if Varlen and cu_seqlens == nullptr and seqused == nullptr int const seqlen_k, headdim, element_size; // Used to calculate L2 swizzling int* const tile_count_semaphore = nullptr; int* const cu_seqlens = nullptr; int* const seqused = nullptr; }; /////////////////////////////////////////////////////////////////////////////// template class SingleTileScheduler { public: using SharedStorage = int; // Device side kernel params struct Params { int const num_blocks, num_head, num_batch, num_splits; int const qhead_per_khead; int const seqlen; cutlass::FastDivmod nsplits_divmod; int* const cu_seqlens; int* const seqused; }; static Params to_underlying_arguments(TileSchedulerArguments const& args) { return {args.num_blocks, args.num_head, args.num_batch, !Split ? 1 : args.num_splits, args.qhead_per_khead, args.seqlen, cutlass::FastDivmod(!Split ? 1 : args.num_splits), !Varlen ? nullptr : args.cu_seqlens, !Varlen ? nullptr : args.seqused}; } static dim3 get_grid_shape(Params const& params, int num_sm) { return {uint32_t(params.num_blocks), uint32_t((!Split ? 1 : params.num_splits) * params.num_head), uint32_t(params.num_batch)}; } struct WorkTileInfo { int block_idx = 0; int bidh = 0; int bidb = 0; bool is_valid_tile = false; CUTLASS_DEVICE bool is_valid(Params const& params) const { return is_valid_tile; } CUTLASS_DEVICE cute::tuple get_block_coord(Params const& params) const { if constexpr (!Split) { return {block_idx, bidh, bidb, 0 /*split_idx*/}; } else { int split_idx; int bidh_actual = params.nsplits_divmod.divmod(split_idx, bidh); return {block_idx, bidh_actual, bidb, split_idx}; } } }; CUTLASS_DEVICE SingleTileScheduler(SharedStorage* const smem_scheduler) { } template CUTLASS_DEVICE WorkTileInfo get_initial_work(Params const& params) const { WorkTileInfo work_info {int(blockIdx.x), int(blockIdx.y), int(blockIdx.z), true}; if constexpr (Varlen) { int seqlen = params.seqused ? params.seqused[work_info.bidb] : (params.cu_seqlens ? params.cu_seqlens[work_info.bidb + 1] - params.cu_seqlens[work_info.bidb] : params.seqlen); if constexpr (PackGQA) { seqlen *= params.qhead_per_khead; } work_info.is_valid_tile = work_info.block_idx * kBlock < seqlen; } return work_info; } CUTLASS_DEVICE void init_consumer() const {} CUTLASS_DEVICE void prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {} template CUTLASS_DEVICE WorkTileInfo get_next_work(Params const& params, WorkTileInfo const& current_work) const { return {-1, -1, -1, false}; } }; /////////////////////////////////////////////////////////////////////////////// template class StaticPersistentTileScheduler { public: using SharedStorage = int; // Device side kernel params struct Params { int total_blocks; cutlass::FastDivmod m_block_divmod, head_divmod; cutlass::FastDivmod nsplits_divmod; }; static Params to_underlying_arguments(TileSchedulerArguments const& args) { return {args.num_blocks * args.num_head * args.num_batch * (!Split ? 1 : args.num_splits), cutlass::FastDivmod(args.num_blocks), cutlass::FastDivmod(args.num_head * (!Split ? 1 : args.num_splits)), cutlass::FastDivmod(!Split ? 1 : args.num_splits)}; } static dim3 get_grid_shape(Params const& params, int num_sm) { return {uint32_t(num_sm)}; } struct WorkTileInfo { int tile_idx; CUTLASS_DEVICE bool is_valid(Params const& params) const { return tile_idx < params.total_blocks; } CUTLASS_DEVICE cute::tuple get_block_coord(Params const& params) const { int block, bidh, bidb; bidb = params.head_divmod.divmod(bidh, params.m_block_divmod.divmod(block, tile_idx)); int split_idx = 0; if constexpr (Split) { bidh = params.nsplits_divmod.divmod(split_idx, bidh); } return {block, bidh, bidb, split_idx}; } }; CUTLASS_DEVICE StaticPersistentTileScheduler(SharedStorage* const smem_scheduler) {}; template CUTLASS_DEVICE WorkTileInfo get_initial_work(Params const& params) const { return {int(blockIdx.x)}; } CUTLASS_DEVICE void init_consumer() const {} CUTLASS_DEVICE void prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {} template CUTLASS_DEVICE WorkTileInfo get_next_work(Params const& params, WorkTileInfo const& current_work) const { return {current_work.tile_idx + int(gridDim.x)}; } }; template class DynamicPersistentTileScheduler { // This scheduler targets the causal (or local) case where each tile takes different // amount of time. We use longest-processing-time-first scheduling: // the longest remaining tile is assigned to the first SM that's free. // SM indicates they are free by incrementing a semaphore. // However, we have to make sure K & V still fit into L2 cache, so we perform scheduling // on "sections" of the head & batch dimension, each section consisting of e.g. 8 heads. // This is the L2 swizzling part. The size of each section is precomputed based on the // size of K & V and the L2 cache size. static_assert(WarpSpecialized || NumProducerThreads == NumMmaThreads); static constexpr int NumThreads = WarpSpecialized ? NumMmaThreads + NumProducerThreads : NumMmaThreads; public: using SharedStorage = int; protected: SharedStorage* const tile_count_smem; public: // Device side kernel params struct Params { int const total_blocks; cutlass::FastDivmod const m_block_divmod, head_divmod; cutlass::FastDivmod const l2_minor_divmod, l2_major_divmod; cutlass::FastDivmod const l2_minor_residual_divmod; int const num_hb_quotient; int* const tile_count_semaphore; }; static Params to_underlying_arguments(TileSchedulerArguments const& args) { int const size_one_kv_head = args.seqlen_k * args.headdim * args.element_size * 2; int const size_l2 = 32 * 1024 * 1024; // 32 MB for K & V // Swizzle is the size of each "section". Round swizzle to a power of 2 // If not PackGQA already, the size of each section can increase by qhead_per_khead int const swizzle = (1 << cutlass::find_log2(size_l2 / size_one_kv_head)) * (PackGQA ? 1 : args.qhead_per_khead); // If we're in the last section (called residual), we don't want to divide by // swizzle. Instead we want to divide by the remainder. int const num_hb_remainder = (args.num_head * args.num_batch) % swizzle; int const num_split_blocks = args.num_blocks * (!Split ? 1 : args.num_splits); // printf("num_split_blocks = %d, num_head = %d, num_batch = %d, swizzle = %d, PackGQA = %d, qhead_per_khead = %d, num_hb_remainder = %d\n", num_split_blocks, args.num_head, args.num_batch, swizzle, int(PackGQA), args.qhead_per_khead, num_hb_remainder); assert(args.tile_count_semaphore != nullptr); return {num_split_blocks * args.num_head * args.num_batch, cutlass::FastDivmod(args.num_blocks), cutlass::FastDivmod(args.num_head), cutlass::FastDivmod(swizzle), cutlass::FastDivmod(swizzle * num_split_blocks), // don't divide by 0 cutlass::FastDivmod(num_hb_remainder > 0 ? num_hb_remainder : 1), (args.num_head * args.num_batch) / swizzle, args.tile_count_semaphore}; } static dim3 get_grid_shape(Params const& params, int num_sm) { return {uint32_t(num_sm)}; } struct WorkTileInfo { int tile_idx; CUTLASS_DEVICE bool is_valid(Params const& params) const { return tile_idx < params.total_blocks; } CUTLASS_DEVICE cute::tuple get_block_coord(Params const& params) const { int block, bidh, bidb; int l2_mod, bidhb, bidhb_residual; bidhb = params.l2_major_divmod.divmod(l2_mod, tile_idx); // If we're in the last section (called residual), we don't want to divide by // swizzle. Instead we want to divide by the remainder. if (bidhb < params.num_hb_quotient) { block = params.l2_minor_divmod.divmod(bidhb_residual, l2_mod); } else { block = params.l2_minor_residual_divmod.divmod(bidhb_residual, l2_mod); } bidb = params.head_divmod.divmod(bidh, bidhb * params.l2_minor_divmod.divisor + bidhb_residual); int split_idx = 0; if constexpr (Split) { split_idx = params.m_block_divmod.divmod(block, block); } // Longest-processing-time-first block = params.m_block_divmod.divisor - 1 - block; return {block, bidh, bidb, split_idx}; } }; CUTLASS_DEVICE DynamicPersistentTileScheduler(SharedStorage* const smem_scheduler) : tile_count_smem(smem_scheduler) {}; template CUTLASS_DEVICE WorkTileInfo get_initial_work(Params const& params) const { return {int(blockIdx.x)}; } CUTLASS_DEVICE void init_consumer() const { if (WarpSpecialized || cutlass::canonical_warp_idx_sync() > 0) { cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemEmpty) /*id*/); } } CUTLASS_DEVICE void prefetch_next_work(Params const& params, WorkTileInfo& current_work) const { if (threadIdx.x % NumProducerThreads == 0) { current_work.tile_idx = atomicAdd(params.tile_count_semaphore, 1) + int(gridDim.x); } } template CUTLASS_DEVICE WorkTileInfo get_next_work(Params const& params, WorkTileInfo const& current_work) const { if constexpr (IsProducerWarp) { // thread 0 already has the right tile_idx, just need to broadcast to the rest of warp 0 int new_tile_idx = __shfl_sync(0xffffffff, current_work.tile_idx, 0 /*lane*/); cutlass::arch::NamedBarrier::sync(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemEmpty) /*id*/); if (threadIdx.x % NumProducerThreads == 0) { *tile_count_smem = current_work.tile_idx; } cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemFull) /*id*/); return {new_tile_idx}; } else { cutlass::arch::NamedBarrier::sync(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemFull) /*id*/); int tile_idx = *tile_count_smem; cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemEmpty) /*id*/); return {tile_idx}; } } }; template class VarlenDynamicPersistentTileScheduler { static_assert(WarpSpecialized || NumProducerThreads == NumMmaThreads); static constexpr int NumThreads = WarpSpecialized ? NumMmaThreads + NumProducerThreads : NumMmaThreads; public: using SharedStorage = int4; protected: SharedStorage* const work_info_smem; public: // Device side kernel params struct Params { int num_head, num_batch; int const qhead_per_khead; int const seqlen; cutlass::FastDivmod nsplits_divmod; int* const tile_count_semaphore; int* const cu_seqlens; int* const seqused; }; static Params to_underlying_arguments(TileSchedulerArguments const& args) { // If Split, for the purpose of scheduling, we pretend that instead there are // (args.num_splits * args.num_head) number of heads. assert(args.tile_count_semaphore != nullptr); return {args.num_head * (!Split ? 1 : args.num_splits), args.num_batch, args.qhead_per_khead, args.seqlen, cutlass::FastDivmod(!Split ? 1 : args.num_splits), args.tile_count_semaphore, args.cu_seqlens, args.seqused}; } static dim3 get_grid_shape(Params const& params, int num_sm) { return {uint32_t(num_sm)}; } struct WorkTileInfo { int tile_idx, block, bidh, bidb; CUTLASS_DEVICE bool is_valid(Params const& params) const { // if (blockIdx.x >= 0 && (threadIdx.x == 128 || threadIdx.x == 0)) { printf("blockIdx.x = %d, threadIdx.x = %d, checking valid, bidb = %d, params.num_batch = %d\n", blockIdx.x, threadIdx.x, bidb, params.num_batch); } return bidb < params.num_batch; } CUTLASS_DEVICE cute::tuple get_block_coord(Params const& params) const { if constexpr (!Split) { return {block, bidh, bidb, 0 /*split_idx*/}; } else { int split_idx; int bidh_actual = params.nsplits_divmod.divmod(split_idx, bidh); return {block, bidh_actual, bidb, split_idx}; } } }; CUTLASS_DEVICE VarlenDynamicPersistentTileScheduler(SharedStorage* const smem_scheduler) : work_info_smem(smem_scheduler) {}; CUTLASS_DEVICE WorkTileInfo tile_idx_to_work_tile(Params const& params, int next_tile_idx, WorkTileInfo const& current_work) const { auto prefix_sum = [](int val) { int lane = threadIdx.x % cutlass::NumThreadsPerWarp; CUTLASS_PRAGMA_UNROLL for (int i = 1; i < cutlass::NumThreadsPerWarp; i <<= 1) { int32_t partial_sum = __shfl_up_sync(0xffffffff, val, i); if (lane >= i) { val += partial_sum; } } return val; }; auto get_num_m_blocks = [&](int bidb_start) { int lane = threadIdx.x % cutlass::NumThreadsPerWarp; int seqlen; if (params.seqused) { seqlen = lane + bidb_start < params.num_batch ? params.seqused[lane + bidb_start] : 0; } else if (params.cu_seqlens) { int cur_cu_seqlen = lane + bidb_start <= params.num_batch ? params.cu_seqlens[lane + bidb_start] : 0; int next_cu_seqlen = __shfl_down_sync(0xffffffff, cur_cu_seqlen, 1); seqlen = next_cu_seqlen - cur_cu_seqlen; } else { seqlen = params.seqlen; } if constexpr (PackGQA) { seqlen *= params.qhead_per_khead; } return lane + bidb_start < params.num_batch && lane < cutlass::NumThreadsPerWarp - 1 ? cute::ceil_div(seqlen, kBlock) : 0; }; int num_m_blocks = get_num_m_blocks(current_work.bidb); // Different for each lane // Cumulative number of blocks for the next 31 batches int num_m_blocks_cumulative = prefix_sum(num_m_blocks); // Total number of blocks for the next 31 batches int m_blocks_in_group = __shfl_sync(0xffffffff, num_m_blocks_cumulative, cutlass::NumThreadsPerWarp - 1); int group_end_tile = current_work.tile_idx - current_work.block - current_work.bidh * __shfl_sync(0xffffffff, num_m_blocks, 0 /*lane*/) + m_blocks_in_group * params.num_head; // Same for all lanes int bidb = current_work.bidb; // if (blockIdx.x <= 9 && threadIdx.x == 0) { // printf("Before while, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group); // } while (group_end_tile <= next_tile_idx) { bidb += cutlass::NumThreadsPerWarp - 1; if (bidb >= params.num_batch) { // if (blockIdx.x <= 9 && threadIdx.x == 0) { // printf("Returning early, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group); // } return {next_tile_idx, 0, 0, params.num_batch}; } num_m_blocks = get_num_m_blocks(bidb); num_m_blocks_cumulative = prefix_sum(num_m_blocks); m_blocks_in_group = __shfl_sync(0xffffffff, num_m_blocks_cumulative, cutlass::NumThreadsPerWarp - 1); group_end_tile += m_blocks_in_group * params.num_head; // if (blockIdx.x <= 9 && threadIdx.x == 0) { // printf("Bottom of while, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group); // } } int group_start_tile = group_end_tile - m_blocks_in_group * params.num_head; // The next problem to process is the first one that does not have ending tile position // that is greater than or equal to tile index. int batch_idx_in_group = __popc(__ballot_sync(0xffffffff, group_start_tile + num_m_blocks_cumulative * params.num_head <= next_tile_idx)); bidb += batch_idx_in_group; num_m_blocks = __shfl_sync(0xffffffff, num_m_blocks, batch_idx_in_group); int mh_block = next_tile_idx - group_start_tile - (batch_idx_in_group == 0 ? 0 : __shfl_sync(0xffffffff, num_m_blocks_cumulative, batch_idx_in_group - 1)) * params.num_head; int bidh = mh_block / num_m_blocks; int block = mh_block - bidh * num_m_blocks; // if (blockIdx.x <= 9 && threadIdx.x == 0) { // printf("blockIdx.x = %d, threadIdx.x = %d, batch_idx_in_group = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d, mh_block = %d, bidh = %d, block = %d\n", blockIdx.x, threadIdx.x, batch_idx_in_group, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group, mh_block, bidh, block); // } return {next_tile_idx, block, bidh, bidb}; } template CUTLASS_DEVICE WorkTileInfo get_initial_work(Params const& params) const { if constexpr (IsProducerWarp) { WorkTileInfo work_info = tile_idx_to_work_tile(params, int(blockIdx.x), {0, 0, 0, 0}); if (threadIdx.x % cutlass::NumThreadsPerWarp == 0) { *work_info_smem = make_int4(work_info.tile_idx, work_info.block, work_info.bidh, work_info.bidb); } cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemFull) /*id*/); return work_info; } else { return get_next_work(params, {0, 0, 0, 0}); } } CUTLASS_DEVICE void init_consumer() const { // Don't arrive at the TileCountSmemEmpty barrier here, because get_initial_work will do that } CUTLASS_DEVICE void prefetch_next_work(Params const& params, WorkTileInfo& current_work) const { if (threadIdx.x % NumProducerThreads == 0) { current_work.tile_idx = atomicAdd(params.tile_count_semaphore, 1) + int(gridDim.x); } } template CUTLASS_DEVICE WorkTileInfo get_next_work(Params const& params, WorkTileInfo const& current_work) const { if constexpr (IsProducerWarp) { // thread 0 has the next tile_idx, just need to broadcast to the rest of warp 0 int new_tile_idx = __shfl_sync(0xffffffff, current_work.tile_idx, 0 /*lane*/); WorkTileInfo work_info = {__shfl_sync(0xffffffff, current_work.tile_idx, 1 /*lane*/), current_work.block, current_work.bidh, current_work.bidb}; work_info = tile_idx_to_work_tile(params, new_tile_idx, work_info); cutlass::arch::NamedBarrier::sync(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemEmpty) /*id*/); if (threadIdx.x % cutlass::NumThreadsPerWarp == 0) { *work_info_smem = make_int4(work_info.tile_idx, work_info.block, work_info.bidh, work_info.bidb); } cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemFull) /*id*/); return work_info; } else { cutlass::arch::NamedBarrier::sync(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemFull) /*id*/); int4 work_info = *work_info_smem; cutlass::arch::NamedBarrier::arrive(NumThreads, static_cast(FwdNamedBarriers::TileCountSmemEmpty) /*id*/); return WorkTileInfo{work_info.x, work_info.y, work_info.z, work_info.w}; } } }; } // flash