/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include "cute/tensor.hpp" #include #include #include #include #include #include "seqlen.h" #include "utils.h" namespace flash { using namespace cute; template class FlashAttnFwdCombine { public: // Type Aliases using TileShape_MK = TileShape_MK_; using ArchTag = ArchTag_; static constexpr int kMaxSplits = 1 << kLogMaxSplits_; static constexpr int AlignmentLSE = std::min(AlignmentLSE_, int(128 / 8 / sizeof(float))); static_assert(AlignmentLSE >= 1); static constexpr int kStages = 4; static_assert(ArchTag::kMinComputeCapability >= 75); static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80; static constexpr uint32_t MaxThreadsPerBlock = kNThreads; static constexpr uint32_t MinBlocksPerMultiprocessor = 2; static constexpr int kBlockM = get<0>(TileShape_MK{}); static constexpr int kHeadDim = get<1>(TileShape_MK{}); static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(ElementPartial); static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad"); static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32); static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad; static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow"); using GmemCopyAtom = std::conditional_t< Has_cp_async, cute::Copy_Atom, ElementPartial>, cute::Copy_Atom, ElementPartial> >; using GmemLayoutAtom = Layout, Int>, Stride, _1>>; static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0); using GmemTiledCopyAccum = decltype( make_tiled_copy(GmemCopyAtom{}, GmemLayoutAtom{}, Layout>>{})); // Val layout, 4 vals per load using GmemTiledCopy = decltype( make_tiled_copy(Copy_Atom, Element>{}, GmemLayoutAtom{}, Layout>>{})); // Val layout, 4 vals per load using AlignmentTypeLSE = cute::uint_byte_t(sizeof(float)) * AlignmentLSE>; static constexpr int kGmemElemsPerLoadLSE = sizeof(AlignmentTypeLSE) / sizeof(float); static_assert(kBlockM % kGmemElemsPerLoadLSE == 0, "kBlockM must be a multiple of kGmemElemsPerLoadLSE"); static_assert(kBlockM % 8 == 0, "kBlockM must be a multiple of 8"); static constexpr int kBlockMSmem = kBlockM % 128 == 0 ? 128 : (kBlockM % 64 == 0 ? 64 : (kBlockM % 32 == 0 ? 32 : (kBlockM % 16 == 0 ? 16 : 8))); static constexpr int kGmemThreadsPerRowLSE = kBlockMSmem / kGmemElemsPerLoadLSE; static_assert(MaxThreadsPerBlock % kGmemThreadsPerRowLSE == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRowLSE"); using GmemLayoutAtomLSE = Layout, Int>, Stride, _1>>; static_assert(kMaxSplits % CUTE_STATIC_V(shape<0>(GmemLayoutAtomLSE{})) == 0); using GmemCopyAtomLSE = std::conditional_t< Has_cp_async, cute::Copy_Atom, float>, cute::Copy_Atom, float> >; using GmemTiledCopyLSE = decltype( make_tiled_copy(GmemCopyAtomLSE{}, GmemLayoutAtomLSE{}, Layout>>{})); // Val layout, 4 vals per load // Otherwise we get IMA when some threads access sLSE, as we're not doing any masking static_assert((kBlockM * kMaxSplits * AlignmentLSE) % kNThreads == 0, "kNThreads must divide kBlockM * kMaxSplits * AlignmentLSE"); // This works for kBlockMSmem = 8, 16, 32, 64, 128, no bank conflicts using SmemLSESwizzle = std::conditional_t< kBlockMSmem == 8, Swizzle<5, 0, 5>, std::conditional_t, Swizzle<3, 2, 3>> >; using SmemLayoutAtomLSE = decltype(composition(SmemLSESwizzle{}, Layout, Int>, Stride, _1>>{})); using SmemLayoutLSE = decltype(tile_to_shape(SmemLayoutAtomLSE{}, Shape, Int>{})); using SmemLayoutO = Layout, Int, Int>, Stride, _1, Int>>; // We want each column (kMaxSplits) to be processed by threads in the same warp. // To reduce the number of shuffles, we want as few threads on the same column as possible. // E.g., if kBlockM is divisible by 64, and there are 256 threads, we want 4 threads (0, 1, 2, 4) per column // have have 64 such quads. static_assert(MaxThreadsPerBlock % kBlockMSmem == 0, "MaxThreadsPerBlock must be a multiple of kBlockMSmem"); static constexpr int kSmemThreadsPerColLSEt = MaxThreadsPerBlock / kBlockMSmem; static_assert(cutlass::NumThreadsPerWarp % kSmemThreadsPerColLSEt == 0, "kSmemThreadsPerColLSEt must divide NumThreadsPerWarp"); using S2RLayoutAtomLSE = Layout, Int>>; using S2RTiledCopyLSE = decltype(make_tiled_copy(cute::Copy_Atom{}, S2RLayoutAtomLSE{}, Layout<_1>{})); using ShapeOPartial = cute::Shape; // (seqlen, d, num_splits, head, batch) using StrideOPartial = cute::Stride; using ShapeLSEPartial = cute::Shape; // (seqlen, num_splits, head, batch) using StrideLSEPartial = cute::Stride<_1, int64_t, int64_t, int64_t>; // (seqlen, num_splits, head, batch) using ShapeO = cute::Shape; // (seqlen, d, head, batch) using StrideO = cute::Stride; using ShapeLSE = cute::Shape; // (seqlen, head, batch) using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch) struct SharedStorage : cute::aligned_struct<128> { cute::array_aligned> smem_lse_partial; cute::array_aligned smem_max_valid_split; cute::array_aligned> smem_o_partial; }; static constexpr int SharedStorageSize = sizeof(SharedStorage); // Device side arguments struct Arguments { ElementPartial const* ptr_O_partial; ShapeOPartial const shape_O_partial; StrideOPartial const stride_O_partial; float const* ptr_LSE_partial; ShapeLSEPartial const shape_LSE_partial; StrideLSEPartial const stride_LSE_partial; Element* ptr_O; StrideO const stride_O; float* ptr_LSE; StrideLSE const stride_LSE; int const* cu_seqlens = nullptr; int const* seqused = nullptr; }; // Kernel entry point API struct Params { ElementPartial const* ptr_O_partial; ShapeOPartial const shape_O_partial; StrideOPartial const stride_O_partial; float const* ptr_LSE_partial; ShapeLSEPartial const shape_LSE_partial; StrideLSEPartial const stride_LSE_partial; Element* ptr_O; StrideO const stride_O; float* ptr_LSE; StrideLSE const stride_LSE; cutlass::FastDivmod seqlen_divmod, head_divmod; int const* cu_seqlens = nullptr; int const* seqused = nullptr; }; // Convert to underlying arguments. In this case, a simple copy for the aliased type. static Params to_underlying_arguments(Arguments const& args) { assert(get<1>(args.shape_LSE_partial) <= kMaxSplits); return { args.ptr_O_partial, args.shape_O_partial, args.stride_O_partial, args.ptr_LSE_partial, args.shape_LSE_partial, args.stride_LSE_partial, args.ptr_O, args.stride_O, args.ptr_LSE, args.stride_LSE, cutlass::FastDivmod(get<0>(args.shape_LSE_partial)), cutlass::FastDivmod(get<2>(args.shape_LSE_partial)), args.cu_seqlens, args.seqused }; } CUTLASS_DEVICE void operator()(Params const& params, char* smem_buf) { SharedStorage& shared_storage = *reinterpret_cast(smem_buf); Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse_partial.data()), SmemLayoutLSE{}); Tensor sMaxValidSplit = make_tensor(make_smem_ptr(shared_storage.smem_max_valid_split.data()), Shape>{}); Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o_partial.data()), SmemLayoutO{}); int const thread_idx = threadIdx.x; int const m_block = blockIdx.x; int const batch = !Varlen ? 0 : blockIdx.y; int const num_splits = get<1>(params.shape_LSE_partial); flash::SeqlenInfo seqlen_info{batch, size<0>(params.shape_LSE_partial), params.cu_seqlens, params.seqused}; int const offset = seqlen_info.offset; int const seqlen = seqlen_info.seqlen; int max_idx = seqlen * get<2>(params.shape_LSE_partial) * get<3>(params.shape_LSE_partial); cutlass::FastDivmod seqlen_divmod_dynamic(seqlen); // Step 1: load LSE_partial from gmem -> smem Tensor mLSEpartial = make_tensor(make_gmem_ptr(params.ptr_LSE_partial + offset * get<0>(params.stride_LSE_partial)), select<1, 0, 2, 3>(params.shape_LSE_partial), select<1, 0, 2, 3>(params.stride_LSE_partial)); // (num_splits, seqlen, head, batch) Tensor mLSEpartial_copy = cute::tiled_divide(mLSEpartial, Shape<_1, Int>{}); GmemTiledCopyLSE gmem_tiled_copy_LSE; auto gmem_thr_copy_LSE = gmem_tiled_copy_LSE.get_thread_slice(thread_idx); Tensor tLSEsLSE = gmem_thr_copy_LSE.partition_D(sLSE); // Construct identity layout for sLSE Tensor cLSE = make_identity_tensor(make_shape(size<0>(sLSE), size<1>(sLSE))); // (NUM_SPLITS, BLK_M) -> (num_splits, blk_m) // Repeat the partitioning with identity layouts Tensor tLSEcLSE = gmem_thr_copy_LSE.partition_S(cLSE); #pragma unroll for (int m = 0; m < size<2>(tLSEcLSE); ++m) { int mi = int(get<1>(tLSEcLSE(_0{}, _0{}, m))); int idx = m_block * kBlockM + mi; if (idx < max_idx) { int m_idx, bidh, bidb; if constexpr (!Varlen) { bidb = params.head_divmod.divmod(bidh, params.seqlen_divmod.divmod(m_idx, idx)); } else { bidh = seqlen_divmod_dynamic.divmod(m_idx, idx); bidb = 0; } Tensor mLSEpartial_cur_copy = mLSEpartial_copy(_, _, m_idx, bidh, bidb); #pragma unroll for (int s = 0; s < size<1>(tLSEcLSE); ++s) { int si = get<0>(tLSEcLSE(_0{}, s, _0{})); // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast(&(tLSEsLSE(_0{}, s, m))), reinterpret_cast(&(tLSEsLSE(_0{}, s, m))) / 4 % 32);} if (si < num_splits) { cute::copy(gmem_tiled_copy_LSE, mLSEpartial_cur_copy(_, si), tLSEsLSE(_, s, m)); } else { cute::fill(tLSEsLSE(_, s, m), -INFINITY); } } } else { // We don't need to zero out the rest of the LSEs, as we will not write the output to gmem // cute::fill(tLSEsLSE(_, _, m), -INFINITY); } } if constexpr (Has_cp_async) { cute::cp_async_fence(); } // Step 2: Load O_partial from gmem -> smem for split = 0, 1, ..., kStages - 2. // We want these async loads to be in flight as we compute the LSE. GmemTiledCopyAccum gmem_tiled_copy_O_partial; auto gmem_thr_copy_O_partial = gmem_tiled_copy_O_partial.get_thread_slice(thread_idx); // Construct identity layout for gO Tensor cO = cute::make_identity_tensor(TileShape_MK{}); // (BLK_M,BLK_K) -> (blk_m,blk_k) // Repeat the partitioning with identity layouts Tensor tOcO = gmem_thr_copy_O_partial.partition_D(cO); Tensor mOpartial = make_tensor(make_gmem_ptr(params.ptr_O_partial + offset * get<0>(params.stride_O_partial)), params.shape_O_partial, params.stride_O_partial); // (seqlen, d, num_splits, head, batch) // Precompute these values to avoid recomputing them in the loop Tensor tOmidx = make_tensor(make_shape(size<1>(tOcO))); Tensor tObidh = make_tensor(make_shape(size<1>(tOcO))); Tensor tObidb = make_tensor(make_shape(size<1>(tOcO))); Tensor tOrOptr = make_tensor(make_shape(size<1>(tOcO))); #pragma unroll for (int m = 0; m < size<1>(tOcO); ++m) { int mi = get<0>(tOcO(_0{}, m, _0{})); int idx = m_block * kBlockM + mi; if constexpr (!Varlen) { tObidb[m] = params.head_divmod.divmod(tObidh(m), params.seqlen_divmod.divmod(tOmidx(m), idx)); } else { tObidh[m] = seqlen_divmod_dynamic.divmod(tOmidx(m), idx); tObidb[m] = 0; } tOrOptr[m] = &mOpartial(tOmidx(m), _0{}, _0{}, tObidh(m), tObidb(m)); if (idx >= max_idx) { tObidb[m] = -1; } } Tensor tOpO = make_tensor(make_shape(size<2>(tOcO))); if constexpr (!(Is_even_K)) { #pragma unroll for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O_partial); } } Tensor tOsOpartial = gmem_thr_copy_O_partial.partition_D(sO); auto load_O_partial = [&] (int split, int stage) { Tensor tOsOpartial_cur = tOsOpartial(_, _, _, stage); #pragma unroll for (int m = 0; m < size<1>(tOcO); ++m) { if (tObidb(m) >= 0) { Tensor mOpartial_cur = make_tensor(make_gmem_ptr(tOrOptr[m]), mOpartial(_0{}, _, _, _0{}, _0{}).layout()); Tensor mOpartial_cur_copy = cute::tiled_divide(mOpartial_cur, Shape>{}); #pragma unroll for (int k = 0; k < size<2>(tOcO); ++k) { int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad; if (Is_even_K || tOpO(k)) { cute::copy(gmem_tiled_copy_O_partial, mOpartial_cur_copy(_, k_idx, split), tOsOpartial_cur(_, m, k)); } } } } }; for (int s = 0; s < kStages - 1; ++s) { if (s < num_splits) { load_O_partial(s, s); } if constexpr (Has_cp_async) { cute::cp_async_fence(); } } // Step 3: load and transpose LSE_partial from smem -> rmem if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait(); } __syncthreads(); S2RTiledCopyLSE s2r_tiled_copy_LSE; auto s2r_thr_copy_LSE = s2r_tiled_copy_LSE.get_thread_slice(thread_idx); Tensor ts2rsLSE = s2r_thr_copy_LSE.partition_S(sLSE); Tensor ts2rrLSE = make_fragment_like(ts2rsLSE); cute::copy(s2r_tiled_copy_LSE, ts2rsLSE, ts2rrLSE); // Step 4: compute the final LSE along the split dimension Tensor lse_sum = make_tensor(make_shape(size<2>(ts2rrLSE))); Tensor ts2rcLSE = s2r_thr_copy_LSE.partition_D(cLSE); // We compute the max valid split for each row to short-circuit the computation later Tensor max_valid_split = make_tensor(make_shape(size<2>(ts2rrLSE))); static_assert(CUTE_STATIC_V(size<0>(ts2rrLSE)) == 1); #pragma unroll for (int m = 0; m < size<2>(ts2rrLSE); ++m) { float lse_max = ts2rrLSE(_0{}, _0{}, m); #pragma unroll for (int s = 1; s < size<1>(ts2rrLSE); ++s) { lse_max = max(lse_max, ts2rrLSE(_0{}, s, m)); } MaxOp max_op; lse_max = Allreduce::run(lse_max, max_op); int max_valid_idx = -1; #pragma unroll for (int s = 0; s < size<1>(ts2rrLSE); ++s) { if (ts2rrLSE(_0{}, s, m) != -INFINITY) { max_valid_idx = get<0>(ts2rcLSE(_0{}, s, _0{})); } } MaxOp max_int_op; max_valid_split[m] = Allreduce::run(max_valid_idx, max_int_op); float lse_max_cur = lse_max == -INFINITY ? 0.0f : lse_max; // In case all local LSEs are -inf float lse_sum_cur = 0.f; #pragma unroll for (int s = 0; s < size<1>(ts2rrLSE); ++s) { float scale = expf(ts2rrLSE(_0{}, s, m) - lse_max_cur); lse_sum_cur += scale; // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast(&(ts2rsLSE(_0{}, s, m))), reinterpret_cast(&(ts2rsLSE(_0{}, s, m))) / 4 % 32);} // ts2rsLSE(_0{}, m, s) = scale; ts2rrLSE(_0{}, s, m) = scale; } SumOp sum_op; lse_sum_cur = Allreduce::run(lse_sum_cur, sum_op); lse_sum(m) = logf(lse_sum_cur) + lse_max; float inv_sum = (lse_sum_cur == 0.f || lse_sum_cur != lse_sum_cur) ? 0.f : 1.f / lse_sum_cur; #pragma unroll for (int s = 0; s < size<1>(ts2rrLSE); ++s) { ts2rrLSE(_0{}, s, m) *= inv_sum; } } // Store the scales exp(lse - lse_logsum) back to smem cute::copy(s2r_tiled_copy_LSE, ts2rrLSE, ts2rsLSE); // Step 5: store final LSE back to gmem auto shape_LSE = select<0, 2, 3>(params.shape_LSE_partial); Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset * get<0>(params.stride_LSE)), shape_LSE, params.stride_LSE); #pragma unroll for (int m = 0; m < size<2>(ts2rrLSE); ++m) { if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) { // Only the thread responsible for s=0 writes to gmem int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m))); int idx = m_block * kBlockM + mi; if (idx < max_idx) { int m_idx, bidh, bidb; if constexpr (!Varlen) { bidb = params.head_divmod.divmod(bidh, params.seqlen_divmod.divmod(m_idx, idx)); } else { bidh = seqlen_divmod_dynamic.divmod(m_idx, idx); bidb = 0; } // printf("thread_idx = %d, m = %d, mi = %d, idx = %d, m_idx = %d, bidh = %d, bidb = %d, lse_sum = %f\n", thread_idx, m, mi, idx, m_idx, bidh, bidb, lse_sum(m)); mLSE(m_idx, bidh, bidb) = lse_sum(m); } if (mi < kBlockM) { sMaxValidSplit[mi] = max_valid_split[m]; } } } // Step 6: read O_partial from gmem -> smem -> rmem and accumulate the final O __syncthreads(); int thr_max_valid_split = sMaxValidSplit[get<0>(tOcO(_0{}, _0{}, _0{}))]; #pragma unroll for (int m = 1; m < size<1>(tOcO); ++m) { thr_max_valid_split = max(thr_max_valid_split, sMaxValidSplit[get<0>(tOcO(_0{}, m, _0{}))]); } Layout tOrOpartial_layout = gmem_thr_copy_O_partial.partition_S(make_tensor(TileShape_MK{})).layout(); Tensor tOrOpartial = make_fragment_like(tOrOpartial_layout); Tensor tOrO = make_fragment_like(tOrOpartial); clear(tOrO); int stage_load = kStages - 1, stage_compute = 0; #pragma unroll 4 // Already tuned for speed for (int s = 0; s <= thr_max_valid_split; ++s) { Tensor scale = make_tensor(make_shape(size<1>(tOrOpartial))); #pragma unroll for (int m = 0; m < size<1>(tOrOpartial); ++m) { scale(m) = sLSE(s, get<0>(tOcO(_0{}, m, _0{}))); } if (s + kStages - 1 <= thr_max_valid_split) { load_O_partial(s + kStages - 1, stage_load); } if constexpr (Has_cp_async) { cute::cp_async_fence(); } stage_load = stage_load < kStages - 1 ? stage_load + 1 : 0; if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait(); } // We don't need __syncthreads() because each thread is just reading its own data from smem cute::copy(Copy_Atom, ElementPartial>{}, tOsOpartial(_, _, _, stage_compute), tOrOpartial); stage_compute = stage_compute < kStages - 1 ? stage_compute + 1 : 0; #pragma unroll for (int m = 0; m < size<1>(tOrOpartial); ++m) { if (tObidb(m) >= 0 && scale(m) > 0.f) { #pragma unroll for (int k = 0; k < size<2>(tOrOpartial); ++k) { if (Is_even_K || tOpO(k)) { Tensor rOpartial = make_tensor_like(tOrOpartial(_, m, k)); flash::convert_type_out(tOrOpartial(_, m, k), rOpartial); #pragma unroll for (int i = 0; i < size<0>(tOrOpartial); ++i) { tOrO(i, m, k) += scale(m) * rOpartial[i]; } } } } } } // Step 7: Write the final O to gmem Tensor rO = make_tensor_like(tOrO); flash::convert_type_out(tOrO, rO); auto shape_O = select<0, 1, 3, 4>(params.shape_O_partial); Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset * get<0>(params.stride_O)), shape_O, params.stride_O); Tensor mO_copy = cute::tiled_divide(mO, Shape<_1, Int>{}); GmemTiledCopy gmem_tiled_copy_O; auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx); #pragma unroll for (int m = 0; m < size<1>(tOcO); ++m) { if (tObidb(m) >= 0) { #pragma unroll for (int k = 0; k < size<2>(tOcO); ++k) { int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad; if (Is_even_K || tOpO(k)) { cute::copy(gmem_tiled_copy_O, rO(_, m, k), mO_copy(_, tOmidx(m), k_idx, tObidh(m), tObidb(m))); } } } } } }; } // namespace flash