from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F import time try: import cudnn except ImportError: cudnn = None from einops import rearrange, repeat # from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_varlen_func # from flash_attn_interface import flash_attn_func as flash_attn_func_v3 from flash_attn_interface import flash_attn_with_kvcache as flash_attn_func_v3 from flash_attn_interface import flash_attn_varlen_func as flash_attn_varlen_func_v3 try: from triton_fused_attention import attention as triton_attention except ImportError: triton_attention = None triton_attention = None def time_fwd(func, *args, repeats=30, verbose=True, desc="", **kwargs): # return benchmark_forward(func, *args, **kwargs, repeats=repeats, verbose=verbose, desc=desc)[1] s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): for _ in range(2): out = func(*args, **kwargs) torch.cuda.current_stream().wait_stream(s) graph = torch.cuda.CUDAGraph() with torch.cuda.graph(graph): out = func(*args, **kwargs) time_f = benchmark_forward(lambda: graph.replay(), repeats=repeats, verbose=verbose, desc=desc) # return time_f[1].mean return time_f[1] def flops(batch, nheads, seqlen_q, seqlen_k, headdim, causal=False, window_size=(-1, -1)): if causal: avg_seqlen = (max(0, seqlen_k - seqlen_q) + seqlen_k) / 2 else: if window_size == (-1, -1): avg_seqlen = seqlen_k else: row_idx = torch.arange(seqlen_q, device='cuda') col_left = torch.maximum(row_idx + seqlen_k - seqlen_q - window_size[0], torch.tensor(0)) col_right = torch.minimum(row_idx + seqlen_k - seqlen_q - window_size[1], torch.tensor(seqlen_k - 1)) avg_seqlen = (col_right - col_left + 1).float().mean().item() return batch * nheads * 2 * seqlen_q * avg_seqlen * headdim * 2 def convert_to_cudnn_type(torch_type): if torch_type == torch.float16: return cudnn.data_type.HALF elif torch_type == torch.bfloat16: return cudnn.data_type.BFLOAT16 elif torch_type == torch.float32: return cudnn.data_type.FLOAT elif torch_type == torch.int32: return cudnn.data_type.INT32 elif torch_type == torch.int64: return cudnn.data_type.INT64 else: raise ValueError("Unsupported tensor data type.") def cudnn_spda_setup(q, k, v, causal=False, window_size_left=-1): b, nheads, seqlen_q, headdim = q.shape _, nheads_k, seqlen_k, _ = k.shape assert v.shape == (b, nheads_k, seqlen_k, headdim) assert cudnn is not None, 'CUDNN is not available' q_gpu, k_gpu, v_gpu = q, k, v o_gpu = torch.empty_like(q_gpu) stats_gpu = torch.empty(b, nheads, seqlen_q, 1, dtype=torch.float32, device=q.device) graph = cudnn.pygraph( io_data_type=convert_to_cudnn_type(q.dtype), intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) q = graph.tensor_like(q_gpu.detach()) k = graph.tensor_like(k_gpu.detach()) v = graph.tensor_like(v_gpu.detach()) o, stats = graph.sdpa( name="sdpa", q=q, k=k, v=v, is_inference=False, attn_scale=1.0 / math.sqrt(headdim), # use_causal_mask_bottom_right=causal or window_size_left >= 0, use_causal_mask=causal or window_size_left >= 0, sliding_window_length=window_size_left if window_size_left >= 0 and not causal else None, ) o.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride()) stats.set_output(True).set_data_type(cudnn.data_type.FLOAT) graph.validate() graph.build_operation_graph() graph.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph.check_support() graph.build_plans() variant_pack = { q: q_gpu, k: k_gpu, v: v_gpu, o: o_gpu, stats: stats_gpu, } workspace = torch.empty(graph.get_workspace_size(), device="cuda", dtype=torch.uint8) def run(*args, **kwargs): graph.execute(variant_pack, workspace) return o_gpu return run def cudnn_spda_bwd_setup(q, k, v, o, g, lse, causal=False, window_size_left=-1): b, nheads, seqlen_q, headdim = q.shape _, nheads_k, seqlen_k, _ = k.shape assert v.shape == (b, nheads_k, seqlen_k, headdim) assert g.shape == (b, nheads, seqlen_q, headdim) assert o.shape == (b, nheads, seqlen_q, headdim) assert lse.shape == (b, nheads, seqlen_q, 1) assert cudnn is not None, 'CUDNN is not available' q_gpu, k_gpu, v_gpu, o_gpu, g_gpu = q, k, v, o, g dq_gpu = torch.empty_like(q_gpu) dk_gpu = torch.empty_like(k_gpu) dv_gpu = torch.empty_like(v_gpu) graph = cudnn.pygraph( io_data_type=convert_to_cudnn_type(q.dtype), intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) q = graph.tensor_like(q_gpu.detach()) k = graph.tensor_like(k_gpu.detach()) v = graph.tensor_like(v_gpu.detach()) o = graph.tensor_like(o_gpu.detach()) g = graph.tensor_like(g_gpu.detach()) stats = graph.tensor_like(lse.detach()) dq, dk, dv = graph.sdpa_backward( name="sdpa_backward", q=q, k=k, v=v, o=o, dO=g, stats=stats, attn_scale=1.0 / math.sqrt(headdim), # use_causal_mask_bottom_right=causal or window_size_left >= 0, use_causal_mask=causal or window_size_left >= 0, sliding_window_length=window_size_left if window_size_left >= 0 and not causal else None, ) dq.set_output(True).set_dim(dq_gpu.shape).set_stride(dq_gpu.stride()) dk.set_output(True).set_dim(dk_gpu.shape).set_stride(dk_gpu.stride()) dv.set_output(True).set_dim(dv_gpu.shape).set_stride(dv_gpu.stride()) graph.validate() graph.build_operation_graph() graph.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph.check_support() graph.build_plans() variant_pack = { q: q_gpu, k: k_gpu, v: v_gpu, o: o_gpu, g: g_gpu, stats: lse, dq: dq_gpu, dk: dk_gpu, dv: dv_gpu, } workspace = torch.empty(graph.get_workspace_size(), device="cuda", dtype=torch.uint8) def run(*args, **kwargs): graph.execute(variant_pack, workspace) return dq_gpu, dk_gpu, dv_gpu return run torch.manual_seed(0) repeats = 10 dropout_p = 0.0 causal = False dtype = torch.bfloat16 # dtype = torch.float8_e4m3fn dtype_gen = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype device = 'cuda' verbose = True varlen = False page_size = None softcap = 0.0 V_colmajor = False deterministic = False batch_size = 2 # seqlen = 2048 seqlen = 8192 # seqlen = 4096 # seqlen = 2047 dim = 2048 # headdim = 128 # headdim = 64 headdim = 256 # for headdim in [64, 128, 256]: # bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] # bs_seqlen_vals = [(32, 512), (16, 1024)] # bs_seqlen_vals = [(2, 64 * 132)] # bs_seqlen_vals = [(2 * 8, 8192)] bs_seqlen_vals = [(2, 8192)] # bs_seqlen_vals = [(1, 16 * 1024)] time_f = {} time_b = {} # tflops_matmul = {} # m, n = 8192, 8192 # for k in [512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192]: # a = torch.randn(m, k, device=device, dtype=dtype) # b = torch.randn(n, k, device=device, dtype=dtype).transpose(-1, -2) # nFLOPS_matmul = 2 * m * n * k # m5 = time_fwd(torch.matmul, a, b, desc='cuBLAS') # print(f'cuBLAS: {m5.mean * 1e3:.3f}ms, {(nFLOPS_matmul / m5.mean * 1e-12):.1f} TFLOPS') # tflops_matmul[k] = nFLOPS_matmul / m5.mean * 1e-12 # # import pickle # # # with open(f'flash3_attn_time_h100_hdim{headdim}_causal.plk', 'wb') as fp: # # with open(f'flash3_matmul_tflops_h100.plk', 'wb') as fp: # # pickle.dump(tflops_matmul, fp, protocol=pickle.HIGHEST_PROTOCOL) # exit(0) # for headdim in [64, 128, 256]: # for headdim in [64, 96, 128, 192]: # for headdim in [64, 96, 128, 192, 256]: # for headdim in [64, 96, 128]: # for headdim in [64, 128, 256]: for headdim in [128]: nheads = dim // headdim # headdim = 64 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 # nheads_kv = nheads nheads_kv = nheads // 4 for batch_size, seqlen in bs_seqlen_vals: num_splits = 1 window_size = (-1, -1) # window_size = (seqlen // 2 - 1, 0) sink_token_length = 0 pack_gqa = None # seqlen_q = 64 seqlen_q = seqlen leftpad_k = None # leftpad_k = torch.full((batch_size,), 0, device=device, dtype=torch.int32) q = torch.randn(batch_size, seqlen_q, nheads, headdim, device=device, dtype=dtype_gen, requires_grad=True) k = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype_gen, requires_grad=True) v = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype_gen, requires_grad=True) q, k, v = [x.detach().to(dtype).requires_grad_() for x in [q, k, v]] v_colmajor = v.detach().transpose(-1, -3).contiguous().transpose(-1, -3).requires_grad_() v_fa3 = v if not V_colmajor else v_colmajor # q = torch.randint(-2, 3, (batch_size, seqlen, nheads, headdim), device=device, dtype=torch.int32).to(dtype) # k = torch.randint(-2, 3, (batch_size, seqlen, nheads, headdim), device=device, dtype=torch.int32).to(dtype) # v = torch.randint(-2, 3, (batch_size, seqlen, nheads, headdim), device=device, dtype=torch.int32).to(dtype) g = torch.randn(batch_size, seqlen_q, nheads, headdim, device=device, dtype=dtype_gen, requires_grad=True) o = torch.randn(batch_size, seqlen_q, nheads, headdim, device=device, dtype=dtype_gen, requires_grad=True) stats = torch.randn(batch_size, seqlen_q, nheads, 1, device=device, dtype=torch.float32) a = torch.randn(batch_size, seqlen, seqlen, device=device, dtype=dtype_gen) b = torch.randn(batch_size, dim * 2, seqlen, device=device, dtype=dtype_gen).transpose(-1, -2) # x = torch.randn(batch_size * seqlen, 4096, device=device, dtype=dtype) # w = torch.randn(4096 * 2, 4096, device=device, dtype=dtype).transpose(-1, -2) if varlen: q_unpad, k_unpad, v_unpad = [rearrange(x.detach(), "b s h d -> (b s) h d").requires_grad_() for x in [q, k, v]] cu_seqlens_q = torch.arange(batch_size + 1, device=device, dtype=torch.int32) * seqlen_q cu_seqlens_k = torch.arange(batch_size + 1, device=device, dtype=torch.int32) * seqlen # cu_seqlens_q = torch.tensor([0, 248, 249, 250, 251, 252, 253, 254, 255, 256], device=device, dtype=torch.int32) # q_unpad = q_unpad[:256] # seqlen_q = 256 # cu_seqlens_q = torch.tensor([0, 376, 377, 378, 379, 380, 381, 382, 383, 384], device=device, dtype=torch.int32) # q_unpad = q_unpad[:384] # seqlen_q = 384 if page_size is not None: assert seqlen % page_size == 0 k_paged, v_paged = [rearrange(x, "b (n p) h d -> (b n) p h d", p=page_size) for x in [k, v]] page_table = rearrange(torch.arange(batch_size * seqlen // page_size, device=device, dtype=torch.int32), "(b s) -> b s", s=seqlen // page_size) else: page_table = None for causal in [False, True]: # for causal in [False]: print(f"\n### {headdim = }, {causal = }, {seqlen = } ###") nFLOPS = flops(batch_size, nheads, seqlen_q, seqlen, headdim, causal=causal, window_size=window_size) if cudnn is not None: # if False: if headdim <= 256 and dtype != torch.float8_e4m3fn: cudnn_spda = cudnn_spda_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), causal=causal, window_size_left=window_size[0]) cudnn_spda_bwd = cudnn_spda_bwd_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), o.transpose(1, 2), g.transpose(1, 2), stats.transpose(1, 2), causal=causal, window_size_left=window_size[0]) # _, m0 = benchmark_forward(flash_attn_func, q, k, v, dropout_p, causal=causal, repeats=repeats, verbose=verbose, desc='Fav2') # if dtype != torch.float8_e4m3fn: if False: if not varlen: m0 = time_fwd(flash_attn_func, q, k, v, dropout_p, causal=causal, window_size=window_size, repeats=repeats, verbose=verbose, desc='Fav2') else: m0 = time_fwd(flash_attn_varlen_func, q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen, dropout_p, causal=causal, window_size=window_size, repeats=repeats, verbose=verbose, desc='Fav2') time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = m0.mean time.sleep(1) _, m0b = benchmark_backward(flash_attn_func, q, k, v, dropout_p, causal=causal, deterministic=deterministic, repeats=repeats, verbose=verbose, desc='Fav2') time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = m0b.mean # pytorch_profiler(flash_attn_func, q, k, v, dropout_p, causal=causal, backward=True) if headdim <= 256 and dtype != torch.float8_e4m3fn: if triton_attention is not None: qt, kt, vt = [x.detach().transpose(1, 2).contiguous().requires_grad_() for x in [q, k, v]] time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark _, m3 = benchmark_forward(triton_attention, qt, kt, vt, causal, 1 / math.sqrt(headdim), repeats=repeats, verbose=verbose, desc='Triton') time_f[(causal, headdim, batch_size, seqlen), "Triton"] = m3.mean # if causal: # triton bwd only works w causal for now # time.sleep(1) # _, m3b = benchmark_backward(triton_attention, qt, kt, vt, causal, 1 / math.sqrt(headdim), repeats=repeats, verbose=verbose, desc='Triton') # time_b[(causal, headdim, batch_size, seqlen), "Triton"] = m3b.mean # pytorch_profiler(triton_attention, q.transpose(1, 2).contiguous(), k.transpose(1, 2).contiguous(), v.transpose(1, 2).contiguous(), causal, 1 / math.sqrt(headdim), backward=True) if cudnn is not None: # if False: if headdim <= 256 and dtype != torch.float8_e4m3fn: time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark _, m2 = benchmark_forward(cudnn_spda, repeats=repeats, verbose=verbose, desc='CuDNN') # m2 = time_fwd(cudnn_spda, repeats=repeats, verbose=verbose, desc='CuDNN') time_f[(causal, headdim, batch_size, seqlen), "cuDNN"] = m2.mean time.sleep(1) _, m2b = benchmark_forward(cudnn_spda_bwd, repeats=repeats, verbose=verbose, desc='CuDNN') time_b[(causal, headdim, batch_size, seqlen), "cuDNN"] = m2b.mean # pytorch_profiler(cudnn_spda, backward=False) # pytorch_profiler(cudnn_spda_bwd, backward=False) time.sleep(1) if not varlen: m1 = time_fwd(flash_attn_func_v3, q, k if page_size is None else k_paged, v_fa3 if page_size is None else v_paged, cache_leftpad = leftpad_k, page_table=page_table, causal=causal, window_size=window_size, sink_token_length=sink_token_length, softcap=softcap, num_splits=num_splits, pack_gqa=pack_gqa, repeats=repeats, verbose=verbose, desc='Fav3') # pytorch_profiler(flash_attn_func_v3, q, k if page_size is None else k_paged, v_fa3 if page_size is None else v_paged, page_table=page_table, causal=causal, window_size=window_size, softcap=softcap, num_splits=num_splits, pack_gqa=pack_gqa) else: m1 = time_fwd(flash_attn_varlen_func_v3, q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen, causal=causal, window_size=window_size, softcap=softcap, num_splits=num_splits, pack_gqa=pack_gqa, repeats=repeats, verbose=verbose, desc='Fav3') # pytorch_profiler(flash_attn_varlen_func_v3, q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen, causal=causal, window_size=window_size, softcap=softcap, num_splits=num_splits) time_f[(causal, headdim, batch_size, seqlen), "Flash3"] = m1.mean # # time.sleep(1) # # m5 = time_fwd(torch.bmm, a, b, desc='cuBLAS', repeats=repeats, verbose=False) # nFLOPS_matmul = nFLOPS # # nFLOPS_matmul = 2 * x.shape[0] * x.shape[1] * w.shape[1] # # m5 = time_fwd(torch.matmul, x, w, desc='cuBLAS') # if dtype != torch.float8_e4m3fn: # time.sleep(1) # if not varlen: # _, m1b = benchmark_backward(flash_attn_func_v3, q, k, v, causal=causal, window_size=window_size, sink_token_length=sink_token_length, softcap=softcap, deterministic=deterministic, # repeats=repeats, verbose=verbose, desc='Fav3') # else: # _, m1b = benchmark_backward(flash_attn_varlen_func_v3, q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen, causal=causal, window_size=window_size, softcap=softcap, deterministic=deterministic, # repeats=repeats, verbose=verbose, desc='Fav3') # time_b[(causal, headdim, batch_size, seqlen), "Flash3"] = m1b.mean # # time.sleep(1) # # if not varlen: # # pytorch_profiler(flash_attn_func_v3, q, k, v, causal=causal, deterministic=deterministic, backward=True) # # else: # # pytorch_profiler(flash_attn_varlen_func_v3, q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen, causal=causal, deterministic=deterministic, backward=True) # benchmark_forward(torch.clone, k, repeats=repeats, verbose=verbose, desc='Memcpy') # if dtype != torch.float8_e4m3fn: if False: print(f'Fav2 fwd: {m0.mean * 1e3:.3f}ms, {(nFLOPS / m0.mean * 1e-12):.1f} TFLOPS') print(f'Fav2 bwd: {m0b.mean * 1e3:.3f}ms, {(2.5 * nFLOPS / m0b.mean * 1e-12):.1f} TFLOPS') if headdim <= 256 and dtype != torch.float8_e4m3fn: if triton_attention is not None: print(f'Triton fwd: {m3.mean * 1e3:.3f}ms, {(nFLOPS / m3.mean * 1e-12):.1f} TFLOPS') # if causal: # print(f'Triton bwd: {m3b.mean * 1e3:.3f}ms, {(2.5 * nFLOPS / m3b.mean * 1e-12):.1f} TFLOPS') if cudnn is not None: print(f'CuDNN fwd: {m2.mean * 1e3:.3f}ms, {(nFLOPS / m2.mean * 1e-12):.1f} TFLOPS') print(f'CuDNN bwd: {m2b.mean * 1e3:.3f}ms, {(2.5 * nFLOPS / m2b.mean * 1e-12):.1f} TFLOPS') print(f'Fav3 fwd: {m1.mean * 1e3:.3f}ms, {(nFLOPS / m1.mean * 1e-12):.1f} TFLOPS') # if dtype != torch.float8_e4m3fn: # print(f'Fav3 bwd: {m1b.mean * 1e3:.3f}ms, {(2.5 * nFLOPS / m1b.mean * 1e-12):.1f} TFLOPS') # benchmark_forward(torch.square, k) # print(f'cuBLAS: {m5.mean * 1e3:.3f}ms, {(nFLOPS_matmul / m5.mean * 1e-12):.1f} TFLOPS') # print(time_f) # print(time_b) # import pickle # # with open(f'flash3_attn_time_h100_hdim{headdim}_causal.plk', 'wb') as fp: # # with open(f'flash3_attn_time_h100_hdim{headdim}.plk', 'wb') as fp: # with open(f'flash3_attn_time_h100_fp8_hdim{headdim}.plk', 'wb') as fp: # # with open(f'flash3_attn_time_h100_hdim{headdim}_1031.plk', 'wb') as fp: # pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)