#include #include "ATen/cuda/CUDAContext.h" #include #include "ln.h" /* Supported Type combinations: input residual compute weights output ============================================ fp32 fp32 fp32 fp32 fp32 fp16 fp32 fp32 fp32 fp16 fp16 fp16 fp32 fp32 fp16 bf16 fp32 fp32 fp32 bf16 bf16 bf16 fp32 fp32 bf16 fp16 fp16 fp32 fp16 fp16 bf16 bf16 fp32 bf16 bf16 Remarks: Output type = Input type Compute always in FP32 */ namespace layer_norm { // Create registries and provide runtime versions of config hash functions. FwdRegistry FWD_FUNCS, PARALLEL_FWD_FUNCS; BwdRegistry BWD_FUNCS, PARALLEL_BWD_FUNCS; //////////////////////////////////////////////////////////////////////////////////////////////////// uint32_t get_type_id(torch::Dtype dtype){ if( dtype == torch::kFloat16 ) { return TypeId::Value; } else if( dtype == torch::kBFloat16 ) { return TypeId::Value; } else if( dtype == torch::kFloat32 ) { return TypeId::Value; } else { TORCH_CHECK(false, "Type not supported: ", dtype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) { using namespace layer_norm; uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8); uint64_t launcher_key = (type_key << 32) | hidden_size; return launcher_key; } } // namespace layer_norm //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::FWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::BWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::FwdFunction & get_parallel_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::PARALLEL_FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::PARALLEL_FWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// layer_norm::BwdFunction & get_parallel_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) { auto iter = layer_norm::PARALLEL_BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size)); if( iter != layer_norm::PARALLEL_BWD_FUNCS.end() ) { return iter->second; } else { TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype); } } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_fwd(const at::Tensor &x0, // Input: BxSxhidden_size c10::optional &residual_, // Residual: BxSxhidden_size const at::Tensor &gamma, // hidden_size c10::optional &beta_, // hidden_size c10::optional &rowscale_, // BxS c10::optional &colscale_, // hidden_size c10::optional &x0_subset_, // BxS c10::optional &z_subset_, // BxS const float dropout_p, const float epsilon, const float rowscale_const, const int64_t z_numrows, c10::optional gen_, bool residual_in_fp32=false, bool is_rms_norm=false ) { auto itype = x0.scalar_type(); auto rtype = residual_.has_value() ? residual_.value().scalar_type() : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type()); auto wtype = gamma.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; TORCH_CHECK(x0.is_cuda()); TORCH_CHECK(gamma.is_cuda()); TORCH_CHECK(x0.is_contiguous()); // c10::IntArrayRef does not own the storage, so we need to construct a vector. // Otherwise just constructing IntArrayRef({blah}) will cause uninitialized memory because // blah is then deallocated. std::vector sizes_vec {!x0_subset_.has_value() ? x0.size(0) : x0_subset_.value().size(0), x0.size(1)}; auto sizes = c10::IntArrayRef(sizes_vec); TORCH_CHECK(x0.dim() == 2); TORCH_CHECK(sizes.size() == 2); const int rows = sizes[0]; const int cols = sizes[1]; auto hidden_size = gamma.numel(); TORCH_CHECK(hidden_size == cols); if (beta_.has_value()) { auto beta = beta_.value(); TORCH_CHECK(beta.dtype() == wtype); TORCH_CHECK(beta.is_cuda()); TORCH_CHECK(beta.is_contiguous()); TORCH_CHECK(beta.sizes() == gamma.sizes()); } if (residual_.has_value()) { auto residual = residual_.value(); TORCH_CHECK(residual.is_cuda()); TORCH_CHECK(residual.is_contiguous()); TORCH_CHECK(residual.sizes() == sizes); } if (rowscale_.has_value()) { auto rowscale = rowscale_.value(); TORCH_CHECK(rowscale.is_cuda()); TORCH_CHECK(rowscale.is_contiguous()); TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(rowscale.dtype() == itype); } if (colscale_.has_value()) { auto colscale = colscale_.value(); TORCH_CHECK(colscale.is_cuda()); TORCH_CHECK(colscale.is_contiguous()); TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols}); TORCH_CHECK(colscale.dtype() == wtype); } if (x0_subset_.has_value()) { auto x0_subset = x0_subset_.value(); TORCH_CHECK(x0_subset.is_cuda()); TORCH_CHECK(x0_subset.is_contiguous()); TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(x0_subset.dtype() == torch::kInt32); TORCH_CHECK(z_subset_.has_value()); auto z_subset = z_subset_.value(); TORCH_CHECK(z_subset.is_cuda()); TORCH_CHECK(z_subset.is_contiguous()); TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(z_subset.dtype() == torch::kInt32); } TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 8192)); TORCH_CHECK(epsilon >= 0.f); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)x0.get_device()}; auto opts = x0.options(); bool save_x = residual_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || x0_subset_.has_value() || (itype != rtype); at::Tensor x; if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); } at::Tensor dmask; if (dropout_p > 0.f) { dmask = torch::empty(x0.sizes(), opts.dtype(mtype)); }; auto z = torch::empty(z_subset_.has_value() ? c10::IntArrayRef{z_numrows, cols} : sizes, opts.dtype(otype)); auto mu = torch::empty({ rows }, opts.dtype(ctype)); auto rsigma = torch::empty({ rows }, opts.dtype(ctype)); layer_norm::LaunchParams launch_params; launch_params.props = at::cuda::getCurrentDeviceProperties(); launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.residual = residual_.has_value() ? residual_.value().data_ptr() : nullptr; launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr; launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr; launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr; launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr; auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); // Request the kernel launcher. auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); // Set the kernel runtime parameters. layer_norm::FwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x0 = x0.data_ptr(); params.x = save_x ? x.data_ptr() : nullptr; params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma.data_ptr(); params.beta = beta_.has_value() ? beta_.value().data_ptr() : nullptr; params.z = z.data_ptr(); params.epsilon = epsilon; params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); params.rowscale_const = rowscale_const; params.is_rms_norm = is_rms_norm; // Query the kernel-specific launch parameters. launcher(launch_params, true); at::Tensor workspace, barrier; if (dropout_p > 0.f) { // number of times random will be generated per thread, to offset philox counter in thc random // state int64_t counter_offset = launch_params.elts_per_thread; // See Note [Acquire lock when using random generators] { std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } } if( launch_params.barrier_size > 0 ) { auto options = x0.options(); barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } // Launch the kernel. launcher(launch_params, false); return { z, x, dmask, mu, rsigma }; } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_bwd(const at::Tensor &dz, // BxSxhidden_size c10::optional &dx_, // BxSxhidden_size const at::Tensor &x, // BxSxhidden_size c10::optional &x0_, // BxSxhidden_size c10::optional &dmask_, // BxSxhidden_size const at::Tensor &mu, // BxS, FP32! const at::Tensor &rsigma, // BxS, FP32! const at::Tensor &gamma, // hidden_size c10::optional &rowscale_, // BxS c10::optional &colscale_, // hidden_size c10::optional &x0_subset_, // BxS c10::optional &z_subset_, // BxS const float dropout_p, const float rowscale_const, const int64_t x0_numrows, const bool has_residual, bool is_rms_norm=false ) { auto itype = dz.scalar_type(); auto rtype = x.scalar_type(); auto wtype = gamma.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); } TORCH_CHECK(dz.dtype() == otype); TORCH_CHECK(mu.dtype() == ctype); TORCH_CHECK(rsigma.dtype() == ctype); TORCH_CHECK(x.is_cuda()); TORCH_CHECK(dz.is_cuda()); TORCH_CHECK(mu.is_cuda()); TORCH_CHECK(rsigma.is_cuda()); TORCH_CHECK(gamma.is_cuda()); TORCH_CHECK(x.is_contiguous()); TORCH_CHECK(dz.is_contiguous()); auto sizes = x.sizes(); TORCH_CHECK(sizes.size() == 2); auto rows = sizes[0]; auto cols = sizes[1]; TORCH_CHECK(dz.dim() == 2); TORCH_CHECK(dz.size(1) == cols); auto hidden_size = gamma.numel(); TORCH_CHECK(hidden_size == cols); // c10::IntArrayRef does not own the storage, so we need to construct a vector. // Otherwise just constructing IntArrayRef({blah}) will cause uninitialized memory because // blah is then deallocated. std::vector x0_sizes_vec {!x0_subset_.has_value() ? rows : x0_numrows, cols}; auto x0_sizes = c10::IntArrayRef(x0_sizes_vec); if (dx_.has_value()) { auto dx = dx_.value(); TORCH_CHECK(dx.dtype() == rtype); TORCH_CHECK(dx.is_cuda()); TORCH_CHECK(dx.is_contiguous()); TORCH_CHECK(dx.sizes() == sizes); } if (dmask_.has_value()) { auto dmask = dmask_.value(); TORCH_CHECK(dmask.dtype() == mtype); TORCH_CHECK(dmask.is_cuda()); TORCH_CHECK(dmask.is_contiguous()); TORCH_CHECK(dmask.sizes() == x0_sizes); } if (rowscale_.has_value()) { auto rowscale = rowscale_.value(); TORCH_CHECK(rowscale.is_cuda()); TORCH_CHECK(rowscale.is_contiguous()); TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(rowscale.dtype() == itype); } if (colscale_.has_value()) { auto colscale = colscale_.value(); TORCH_CHECK(colscale.is_cuda()); TORCH_CHECK(colscale.is_contiguous()); TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols}); TORCH_CHECK(colscale.dtype() == wtype); TORCH_CHECK(x0_.has_value()); auto x0 = x0_.value(); TORCH_CHECK(x0.is_cuda()); TORCH_CHECK(x0.is_contiguous()); TORCH_CHECK(x0.sizes() == x0_sizes); TORCH_CHECK(x0.dtype() == itype); } if (x0_subset_.has_value()) { auto x0_subset = x0_subset_.value(); TORCH_CHECK(x0_subset.is_cuda()); TORCH_CHECK(x0_subset.is_contiguous()); TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(x0_subset.dtype() == torch::kInt32); TORCH_CHECK(z_subset_.has_value()); auto z_subset = z_subset_.value(); TORCH_CHECK(z_subset.is_cuda()); TORCH_CHECK(z_subset.is_contiguous()); TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows}); TORCH_CHECK(z_subset.dtype() == torch::kInt32); } TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 8192)); TORCH_CHECK(mu.numel() == rows); TORCH_CHECK(mu.sizes() == rsigma.sizes()); TORCH_CHECK(gamma.numel() == cols); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)dz.get_device()}; auto opts = x.options(); auto dx0 = torch::empty(x0_sizes, opts.dtype(itype)); at::Tensor dresidual; if (has_residual) { dresidual = torch::empty_like(x, opts.dtype(rtype)); } auto dgamma = torch::empty_like(gamma); auto dbeta = torch::empty_like(gamma); at::Tensor dcolscale; if (colscale_.has_value()) { dcolscale = torch::empty_like(colscale_.value()); } layer_norm::LaunchParams launch_params; launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); launch_params.props = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.dresidual = has_residual ? dresidual.data_ptr() : nullptr; launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr; launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr; launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr; launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr; auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); launcher(launch_params, true); auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); at::Tensor dcolscale_part; if (colscale_.has_value()) { dcolscale_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); } at::Tensor workspace, barrier; layer_norm::BwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x = x.data_ptr(); params.x0 = x0_.has_value() ? x0_.value().data_ptr() : nullptr; params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma.data_ptr(); params.dz = dz.data_ptr(); params.dx = dx_.has_value() ? dx_.value().data_ptr() : nullptr; params.dx0 = dx0.data_ptr(); params.dbeta = dbeta.data_ptr(); params.dgamma = dgamma.data_ptr(); params.dcolscale = colscale_.has_value() ? dcolscale.data_ptr() : nullptr; params.dbeta_part = dbeta_part.data_ptr(); params.dgamma_part = dgamma_part.data_ptr(); params.dcolscale_part = colscale_.has_value() ? dcolscale_part.data_ptr() : nullptr; params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); params.rowscale_const = rowscale_const; params.is_rms_norm = is_rms_norm; if( launch_params.barrier_size > 0 ) { // TODO Any way to avoid this? barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } launcher(launch_params, false); std::vector result = { dx0, dresidual, dgamma, dbeta, dgamma_part, dbeta_part }; if (colscale_.has_value()) { result.push_back(dcolscale); result.push_back(dcolscale_part); } return result; } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_parallel_residual_fwd( const at::Tensor &x0, // Input: BxSxhidden_size c10::optional &x1_, // Input: BxSxhidden_size c10::optional &residual_, // Residual: BxSxhidden_size const at::Tensor &gamma0, // hidden_size c10::optional &beta0_, // hidden_size c10::optional &gamma1_, // hidden_size c10::optional &beta1_, // hidden_size const float dropout_p, const float epsilon, c10::optional gen_, bool residual_in_fp32=false, bool is_rms_norm=false ) { auto itype = x0.scalar_type(); auto rtype = residual_.has_value() ? residual_.value().scalar_type() : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type()); auto wtype = gamma0.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; TORCH_CHECK(x0.is_cuda()); TORCH_CHECK(gamma0.is_cuda()); TORCH_CHECK(x0.is_contiguous()); const auto sizes = x0.sizes(); TORCH_CHECK(x0.dim() == 2); const int rows = sizes[0]; const int cols = sizes[1]; auto hidden_size = gamma0.numel(); TORCH_CHECK(hidden_size == cols); if (x1_.has_value()) { auto x1 = x1_.value(); TORCH_CHECK(x1.is_cuda()); TORCH_CHECK(x1.is_contiguous()); TORCH_CHECK(x1.sizes() == sizes); } if (residual_.has_value()) { auto residual = residual_.value(); TORCH_CHECK(residual.is_cuda()); TORCH_CHECK(residual.is_contiguous()); TORCH_CHECK(residual.sizes() == sizes); } if (beta0_.has_value()) { auto beta0 = beta0_.value(); TORCH_CHECK(beta0.dtype() == wtype); TORCH_CHECK(beta0.is_cuda()); TORCH_CHECK(beta0.is_contiguous()); TORCH_CHECK(beta0.sizes() == gamma0.sizes()); } if (gamma1_.has_value()) { auto gamma1 = gamma1_.value(); TORCH_CHECK(gamma1.dtype() == wtype); TORCH_CHECK(gamma1.is_cuda()); TORCH_CHECK(gamma1.is_contiguous()); TORCH_CHECK(gamma1.sizes() == gamma0.sizes()); } if (beta1_.has_value()) { auto beta1 = beta1_.value(); TORCH_CHECK(beta1.dtype() == wtype); TORCH_CHECK(beta1.is_cuda()); TORCH_CHECK(beta1.is_contiguous()); TORCH_CHECK(beta1.sizes() == gamma0.sizes()); } TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 8192)); TORCH_CHECK(epsilon >= 0.f); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)x0.get_device()}; auto opts = x0.options(); bool save_x = residual_.has_value() || x1_.has_value() || (dropout_p > 0.f) || (itype != rtype); at::Tensor x; if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); } at::Tensor dmask0, dmask1; if (dropout_p > 0.f) { dmask0 = torch::empty(x0.sizes(), opts.dtype(mtype)); if (x1_.has_value()) { dmask1 = torch::empty(x0.sizes(), opts.dtype(mtype)); } }; auto z0 = torch::empty(sizes, opts.dtype(otype)); at::Tensor z1; if (gamma1_.has_value()) { z1 = torch::empty(sizes, opts.dtype(otype)); } auto mu = torch::empty({ rows }, opts.dtype(ctype)); auto rsigma = torch::empty({ rows }, opts.dtype(ctype)); layer_norm::LaunchParams launch_params; launch_params.props = at::cuda::getCurrentDeviceProperties(); launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.residual = residual_.has_value() ? residual_.value().data_ptr() : nullptr; auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); // Request the kernel launcher. auto launcher = get_parallel_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); // Set the kernel runtime parameters. layer_norm::FwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x0 = x0.data_ptr(); params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr; params.x = save_x ? x.data_ptr() : nullptr; params.dmask = dropout_p > 0.f ? dmask0.data_ptr() : nullptr; params.dmask1 = (dropout_p > 0.f && x1_.has_value()) ? dmask1.data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma0.data_ptr(); params.gamma1 = gamma1_.has_value() ? gamma1_.value().data_ptr() : nullptr; params.beta = beta0_.has_value() ? beta0_.value().data_ptr() : nullptr; params.beta1 = beta1_.has_value() ? beta1_.value().data_ptr() : nullptr; params.z = z0.data_ptr(); params.z1 = gamma1_.has_value() ? z1.data_ptr() : nullptr; params.epsilon = epsilon; params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); params.is_rms_norm = is_rms_norm; // Query the kernel-specific launch parameters. launcher(launch_params, true); at::Tensor workspace, barrier; if (dropout_p > 0.f) { // number of times random will be generated per thread, to offset philox counter in thc random // state int64_t counter_offset = 2 * launch_params.elts_per_thread; // See Note [Acquire lock when using random generators] { std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } } if( launch_params.barrier_size > 0 ) { auto options = x0.options(); barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } // Launch the kernel. launcher(launch_params, false); return { z0, z1, x, dmask0, dmask1, mu, rsigma }; } //////////////////////////////////////////////////////////////////////////////////////////////////// std::vector dropout_add_ln_parallel_residual_bwd( const at::Tensor &dz0, // BxSxhidden_size c10::optional &dz1_, // BxSxhidden_size c10::optional &dx_, // BxSxhidden_size const at::Tensor &x, // BxSxhidden_size c10::optional &dmask0_, // BxSxhidden_size c10::optional &dmask1_, // BxSxhidden_size const at::Tensor &mu, // BxS, FP32! const at::Tensor &rsigma, // BxS, FP32! const at::Tensor &gamma0, // hidden_size c10::optional &gamma1_, // hidden_size const float dropout_p, const bool has_x1, const bool has_residual, bool is_rms_norm=false ) { auto itype = dz0.scalar_type(); auto rtype = x.scalar_type(); auto wtype = gamma0.scalar_type(); auto otype = itype; auto ctype = torch::kFloat32; auto mtype = torch::kUInt8; if (dropout_p > 0.f) { TORCH_CHECK(dmask0_.has_value()); } TORCH_CHECK(dz0.dtype() == otype); TORCH_CHECK(dz0.dtype() == otype); TORCH_CHECK(mu.dtype() == ctype); TORCH_CHECK(rsigma.dtype() == ctype); TORCH_CHECK(x.is_cuda()); TORCH_CHECK(dz0.is_cuda()); TORCH_CHECK(mu.is_cuda()); TORCH_CHECK(rsigma.is_cuda()); TORCH_CHECK(gamma0.is_cuda()); TORCH_CHECK(x.is_contiguous()); TORCH_CHECK(dz0.is_contiguous()); auto sizes = x.sizes(); TORCH_CHECK(sizes.size() == 2); auto rows = sizes[0]; auto cols = sizes[1]; TORCH_CHECK(dz0.dim() == 2); TORCH_CHECK(dz0.size(1) == cols); auto hidden_size = gamma0.numel(); TORCH_CHECK(hidden_size == cols); if (dz1_.has_value()) { auto dz1 = dz1_.value(); TORCH_CHECK(dz1.dtype() == otype); TORCH_CHECK(dz1.is_cuda()); TORCH_CHECK(dz1.is_contiguous()); TORCH_CHECK(dz1.sizes() == sizes); TORCH_CHECK(gamma1_.has_value()); auto gamma1 = gamma1_.value(); TORCH_CHECK(gamma1.dtype() == wtype); TORCH_CHECK(gamma1.is_cuda()); TORCH_CHECK(gamma1.is_contiguous()); TORCH_CHECK(gamma1.sizes() == gamma0.sizes()); } if (dx_.has_value()) { auto dx = dx_.value(); TORCH_CHECK(dx.dtype() == rtype); TORCH_CHECK(dx.is_cuda()); TORCH_CHECK(dx.is_contiguous()); TORCH_CHECK(dx.sizes() == sizes); } if (dmask0_.has_value()) { auto dmask0 = dmask0_.value(); TORCH_CHECK(dmask0.dtype() == mtype); TORCH_CHECK(dmask0.is_cuda()); TORCH_CHECK(dmask0.is_contiguous()); TORCH_CHECK(dmask0.sizes() == sizes); if (has_x1) { TORCH_CHECK(dmask1_.has_value()); auto dmask1 = dmask1_.value(); TORCH_CHECK(dmask1.dtype() == mtype); TORCH_CHECK(dmask1.is_cuda()); TORCH_CHECK(dmask1.is_contiguous()); TORCH_CHECK(dmask1.sizes() == sizes); } } TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 8192)); TORCH_CHECK(mu.numel() == rows); TORCH_CHECK(mu.sizes() == rsigma.sizes()); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)dz0.get_device()}; auto opts = x.options(); auto dx0 = torch::empty(sizes, opts.dtype(itype)); at::Tensor dx1; if (has_x1) { dx1 = torch::empty(sizes, opts.dtype(itype)); } at::Tensor dresidual; if (has_residual) { dresidual = torch::empty_like(x, opts.dtype(rtype)); } auto dgamma0 = torch::empty_like(gamma0); auto dbeta0 = torch::empty_like(gamma0); at::Tensor dgamma1, dbeta1; if (gamma1_.has_value()) { dgamma1 = torch::empty_like(gamma0); dbeta1 = torch::empty_like(gamma0); } layer_norm::LaunchParams launch_params; launch_params.stream = at::cuda::getCurrentCUDAStream().stream(); launch_params.props = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dropout_p < 1.f); launch_params.params.dropout_keep_p = 1.f - dropout_p; launch_params.params.dresidual = has_residual ? dresidual.data_ptr() : nullptr; auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024); auto launcher = get_parallel_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple)); launcher(launch_params, true); auto dgamma0_part = torch::zeros({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); auto dbeta0_part = torch::zeros({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype)); at::Tensor dgamma1_part, dbeta1_part; if (gamma1_.has_value()) { dgamma1_part = torch::zeros_like(dgamma0_part); dbeta1_part = torch::zeros_like(dbeta0_part); } at::Tensor workspace, barrier; layer_norm::BwdParams ¶ms = launch_params.params; params.rows = rows; params.cols = cols; params.x = x.data_ptr(); params.dmask = dropout_p > 0.f ? dmask0_.value().data_ptr() : nullptr; params.dmask1 = (dropout_p > 0.f && has_x1) ? dmask1_.value().data_ptr() : nullptr; params.mu = mu.data_ptr(); params.rs = rsigma.data_ptr(); params.gamma = gamma0.data_ptr(); params.gamma1 = gamma1_.has_value() ? gamma1_.value().data_ptr() : nullptr; params.dz = dz0.data_ptr(); params.dz1 = dz1_.has_value() ? dz1_.value().data_ptr() : nullptr; params.dx = dx_.has_value() ? dx_.value().data_ptr() : nullptr; params.dx0 = dx0.data_ptr(); params.dx1 = has_x1 ? dx1.data_ptr() : nullptr; params.dbeta = dbeta0.data_ptr(); params.dgamma = dgamma0.data_ptr(); params.dbeta1 = gamma1_.has_value() ? dbeta1.data_ptr() : nullptr; params.dgamma1 = gamma1_.has_value() ? dgamma1.data_ptr() : nullptr; params.dbeta_part = dbeta0_part.data_ptr(); params.dgamma_part = dgamma0_part.data_ptr(); params.dbeta1_part = gamma1_.has_value() ? dbeta1_part.data_ptr() : nullptr; params.dgamma1_part = gamma1_.has_value() ? dgamma1_part.data_ptr() : nullptr; params.dropout_scale = 1.f / (1.f - dropout_p); params.inverse_cols = 1.f / float(params.cols); params.is_rms_norm = is_rms_norm; if( launch_params.barrier_size > 0 ) { // TODO Any way to avoid this? barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32)); workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar)); params.workspace = workspace.data_ptr(); params.barrier = barrier.data_ptr(); } launcher(launch_params, false); std::vector result = { dx0, dx1, dresidual, dgamma0, dbeta0, dgamma1, dbeta1, dgamma0_part, dbeta0_part, dgamma1_part, dbeta1_part }; return result; } //////////////////////////////////////////////////////////////////////////////////////////////////// PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.doc() = "CUDA DropoutAddLayerNorm"; m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel", py::arg("x0"), py::arg("residual"), py::arg("gamma"), py::arg("beta_"), py::arg("rowscale_"), py::arg("colscale_"), py::arg("x0_subset_"), py::arg("z_subset_"), py::arg("dropout_p"), py::arg("epsilon"), py::arg("rowscale_const"), py::arg("z_numrows"), py::arg("gen_"), py::arg("residual_in_fp32")=false, py::arg("is_rms_norm")=false); m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel", py::arg("dz"), py::arg("dx_"), py::arg("x"), py::arg("x0_"), py::arg("dmask_"), py::arg("mu"), py::arg("rsigma"), py::arg("gamma"), py::arg("rowscale_"), py::arg("colscale_"), py::arg("x0_subset_"), py::arg("z_subset_"), py::arg("dropout_p"), py::arg("rowscale_const"), py::arg("x0_numrows"), py::arg("has_residual"), py::arg("is_rms_norm")=false); m.def("dropout_add_ln_parallel_residual_fwd", &dropout_add_ln_parallel_residual_fwd, "Run Dropout + Add + LayerNorm parallel residual forward kernel", py::arg("x0"), py::arg("x1_"), py::arg("residual"), py::arg("gamma0"), py::arg("beta0_"), py::arg("gamma1_"), py::arg("beta1_"), py::arg("dropout_p"), py::arg("epsilon"), py::arg("gen_"), py::arg("residual_in_fp32")=false, py::arg("is_rms_norm")=false); m.def("dropout_add_ln_parallel_residual_bwd", &dropout_add_ln_parallel_residual_bwd, "Run Dropout + Add + LayerNorm parallel residual backward kernel", py::arg("dz0"), py::arg("dz1_"), py::arg("dx_"), py::arg("x"), py::arg("dmask0_"), py::arg("dmask1_"), py::arg("mu"), py::arg("rsigma"), py::arg("gamma0"), py::arg("gamma1_"), py::arg("dropout_p"), py::arg("has_x1"), py::arg("has_residual"), py::arg("is_rms_norm")=false); }