import time import torch import torch.utils.benchmark as benchmark from triton.testing import do_bench def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, **kwinputs): """Use Pytorch Benchmark on the forward pass of an arbitrary function.""" if verbose: print(desc, '- Forward pass') t = benchmark.Timer( stmt='fn(*inputs, **kwinputs)', globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m torch.manual_seed(0) repeats = 30 dtype = torch.float16 device = 'cuda' verbose = False m, n = 8192, 8192 tflops_matmul = {} tflops_matmul1 = {} for k in [512, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192]: a = torch.randn(m, k, device=device, dtype=dtype) b = torch.randn(n, k, device=device, dtype=dtype).transpose(-1, -2) nFLOPS_matmul = 2 * m * n * k time.sleep(2) # to reduce power throttling timing = benchmark_forward(torch.matmul, a, b, desc='cuBLAS', verbose=verbose, repeats=repeats)[1] tflops_matmul[k] = nFLOPS_matmul / timing.mean * 1e-12 print(f'[torch.utils.benchmark] cuBLAS, {m = }, {n = }, {k = }: {timing.mean * 1e3:.3f}ms, {tflops_matmul[k]:.1f} TFLOPS') time.sleep(2) # to reduce power throttling ms = do_bench(lambda: torch.matmul(a, b), warmup=10, rep=repeats) tflops_matmul1[k] = nFLOPS_matmul / ms * 1e-9 print(f'[triton.test.do_bench] cuBLAS, {m = }, {n = }, {k = }: {ms:.3f}ms, {tflops_matmul1[k]:.1f} TFLOPS')