from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat # from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func # # from flash_attn.triton.fused_attention import attention as attention # from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func # from flash_attn.flash_attn_triton_og import attention as attention_og # from triton.ops.flash_attention import attention as attention_triton from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func try: from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax except ImportError: scaled_upper_triang_masked_softmax = None def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def attention_megatron(qkv): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) output = torch.einsum('bhts,bshd->bthd', attention, v) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 8 seqlen = 2048 nheads = 12 headdim = 128 # nheads = 24 # headdim = 64 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 dropout_p = 0.0 causal = True dtype = torch.float16 device = 'cuda' qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) # benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad, # cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention') # pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad, # cu_seqlens, seqlen, dropout_p, causal=causal, backward=True) benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2') pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False) # for dropout_p in [0.1, 0.0]: # for causal in [False, True]: # print(f"### {dropout_p = }, {causal = } ###") # pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True) # nheads_k = 2 # q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) # kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype, # requires_grad=True) # if fav2_kvpacked_func is not None: # benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2') # pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True) # dropout_p = 0.0 # causal = False # benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal, # repeats=repeats, desc='PyTorch Attention') # benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton') # pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True) # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, # requires_grad=True) for _ in range(3)] # benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG') # # pytorch_profiler(attention, q, k, v, 1.0, backward=True) # if scaled_upper_triang_masked_softmax is not None: # benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention') # from src.ops.fftconv import fftconv_func # dim = nheads * headdim # u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True) # k = torch.randn(dim, seqlen, device=device, requires_grad=True) # D = torch.randn(dim, device=device, requires_grad=True) # benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv') # pytorch_profiler(fftconv_func, u, k, D, backward=True) # pytorch_profiler(torch.fft.rfft, u.float()) flops = 4 * batch_size * seqlen ** 2 * nheads * headdim ideal_a100_time = flops / 312 / 1e9 print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms") exit(0) def time_fwd_bwd(func, *args, **kwargs): time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) return time_f[1].mean, time_b[1].mean bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] causal_vals = [False, True] headdim_vals = [64, 128] dim = 2048 dropout_p = 0.0 time_f = {} time_b = {} for causal in causal_vals: for headdim in headdim_vals: for batch_size, seqlen in bs_seqlen_vals: nheads = dim // headdim qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) f, b = time_fwd_bwd( flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, verbose=False ) time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b qkv = qkv.detach().requires_grad_(True) f, b = time_fwd_bwd( fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False ) time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, # requires_grad=True) for _ in range(3)] # # Try both values of sequence_parallel and pick the faster one # f, b = time_fwd_bwd( # attention_triton, q, k, v, causal, headdim**(-0.5), # False, repeats=repeats, verbose=False # ) # _, b0 = time_fwd_bwd( # attention_triton, q, k, v, causal, headdim**(-0.5), # True, repeats=repeats, verbose=False # ) # time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f # time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0) if seqlen <= 8 * 1024: qkv = qkv.detach().requires_grad_(True) f, b = time_fwd_bwd( attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False ) else: f, b = float('nan'), float('nan') time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b # q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, # requires_grad=True) for _ in range(3)] # import xformers.ops as xops # f, b = time_fwd_bwd( # xops.memory_efficient_attention, q, k, v, # attn_bias=xops.LowerTriangularMask() if causal else None, # op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp) # ) # time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f # time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b import pickle with open('flash2_attn_time_h100.plk', 'wb') as fp: pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)