# @package _global_ # specify here default training configuration defaults: - _self_ - trainer: default - optimizer: adamw - scheduler: null - task: sequence-model - model: null - datamodule: null - callbacks: default # set this to null if you don't want to use callbacks - metrics: null - logger: null # set logger here or use command line (e.g. `python run.py logger=wandb`) - mode: default - experiment: null - hparams_search: null # enable color logging - override hydra/hydra_logging: colorlog - override hydra/job_logging: colorlog # path to original working directory # hydra hijacks working directory by changing it to the current log directory, # so it's useful to have this path as a special variable # https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory work_dir: ${hydra:runtime.cwd} # path to folder with data data_dir: ${work_dir}/data/ # pretty print config at the start of the run using Rich library print_config: True # disable python warnings if they annoy you ignore_warnings: True # check performance on test set, using the best model achieved during training # lightning chooses best model based on metric specified in checkpoint callback test_after_training: True resume: False # seed for random number generators in pytorch, numpy and python.random seed: null # name of the run, accessed by loggers name: null