# rich_progress_bar: # _target_: pytorch_lightning.callbacks.RichProgressBar rich_model_summary: _target_: pytorch_lightning.callbacks.RichModelSummary model_checkpoint: _target_: pytorch_lightning.callbacks.ModelCheckpoint monitor: "val/acc" # name of the logged metric which determines when model is improving mode: "max" # can be "max" or "min" save_top_k: 1 # save k best models (determined by above metric) save_last: True # additionally always save model from last epoch verbose: False dirpath: ${oc.env:CHECKPOINT_DIR,checkpoints}/${oc.select:name,''} filename: "epoch_{epoch:03d}" auto_insert_metric_name: False early_stopping: _target_: pytorch_lightning.callbacks.EarlyStopping monitor: "val/acc" # name of the logged metric which determines when model is improving mode: "max" # can be "max" or "min" patience: 100 # how many epochs of not improving until training stops min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement learning_rate_monitor: _target_: pytorch_lightning.callbacks.LearningRateMonitor logging_interval: step speed_monitor: _target_: src.callbacks.speed_monitor.SpeedMonitor intra_step_time: True inter_step_time: True epoch_time: True loss_scale_monitor: _target_: src.callbacks.loss_scale_monitor.LossScaleMonitor params_log: _target_: src.callbacks.params_log.ParamsLog total_params_log: True trainable_params_log: True non_trainable_params_log: True gpu_affinity: _target_: src.callbacks.gpu_affinity.GpuAffinity