# Copyright (c) 2024, Tri Dao. # Implement dropout + residual + layer_norm / rms_norm. # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate. # This is faster for dimensions up to 8k, but after that it's much slower due to register spilling. # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine. import math import torch import torch.nn.functional as F from torch.cuda.amp import custom_fwd, custom_bwd import triton import triton.language as tl def layer_norm_ref( x, weight, bias, residual=None, x1=None, weight1=None, bias1=None, eps=1e-6, dropout_p=0.0, rowscale=None, prenorm=False, dropout_mask=None, dropout_mask1=None, upcast=False, ): dtype = x.dtype if upcast: x = x.float() weight = weight.float() bias = bias.float() if bias is not None else None residual = residual.float() if residual is not None else residual x1 = x1.float() if x1 is not None else None weight1 = weight1.float() if weight1 is not None else None bias1 = bias1.float() if bias1 is not None else None if x1 is not None: assert rowscale is None, "rowscale is not supported with parallel LayerNorm" if rowscale is not None: x = x * rowscale[..., None] if dropout_p > 0.0: if dropout_mask is not None: x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p) else: x = F.dropout(x, p=dropout_p) if x1 is not None: if dropout_mask1 is not None: x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p) else: x1 = F.dropout(x1, p=dropout_p) if x1 is not None: x = x + x1 if residual is not None: x = (x + residual).to(x.dtype) out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to( dtype ) if weight1 is None: return out if not prenorm else (out, x) else: out1 = F.layer_norm( x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps ).to(dtype) return (out, out1) if not prenorm else (out, out1, x) def rms_norm_ref( x, weight, bias, residual=None, x1=None, weight1=None, bias1=None, eps=1e-6, dropout_p=0.0, rowscale=None, prenorm=False, dropout_mask=None, dropout_mask1=None, upcast=False, ): dtype = x.dtype if upcast: x = x.float() weight = weight.float() bias = bias.float() if bias is not None else None residual = residual.float() if residual is not None else residual x1 = x1.float() if x1 is not None else None weight1 = weight1.float() if weight1 is not None else None bias1 = bias1.float() if bias1 is not None else None if x1 is not None: assert rowscale is None, "rowscale is not supported with parallel LayerNorm" if rowscale is not None: x = x * rowscale[..., None] if dropout_p > 0.0: if dropout_mask is not None: x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p) else: x = F.dropout(x, p=dropout_p) if x1 is not None: if dropout_mask1 is not None: x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p) else: x1 = F.dropout(x1, p=dropout_p) if x1 is not None: x = x + x1 if residual is not None: x = (x + residual).to(x.dtype) rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype) if weight1 is None: return out if not prenorm else (out, x) else: out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to( dtype ) return (out, out1) if not prenorm else (out, out1, x) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None}) @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None}) @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None}) @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None}) @triton.jit def _layer_norm_fwd_1pass_kernel( X, # pointer to the input Y, # pointer to the output W, # pointer to the weights B, # pointer to the biases RESIDUAL, # pointer to the residual X1, W1, B1, Y1, RESIDUAL_OUT, # pointer to the residual ROWSCALE, SEEDS, # Dropout seeds for each row DROPOUT_MASK, Mean, # pointer to the mean Rstd, # pointer to the 1/std stride_x_row, # how much to increase the pointer when moving by 1 row stride_y_row, stride_res_row, stride_res_out_row, stride_x1_row, stride_y1_row, M, # number of rows in X N, # number of columns in X eps, # epsilon to avoid division by zero dropout_p, # Dropout probability IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_RESIDUAL: tl.constexpr, STORE_RESIDUAL_OUT: tl.constexpr, HAS_BIAS: tl.constexpr, HAS_DROPOUT: tl.constexpr, STORE_DROPOUT_MASK: tl.constexpr, HAS_ROWSCALE: tl.constexpr, HAS_X1: tl.constexpr, HAS_W1: tl.constexpr, HAS_B1: tl.constexpr, ): # Map the program id to the row of X and Y it should compute. row = tl.program_id(0) X += row * stride_x_row Y += row * stride_y_row if HAS_RESIDUAL: RESIDUAL += row * stride_res_row if STORE_RESIDUAL_OUT: RESIDUAL_OUT += row * stride_res_out_row if HAS_X1: X1 += row * stride_x1_row if HAS_W1: Y1 += row * stride_y1_row # Compute mean and variance cols = tl.arange(0, BLOCK_N) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) if HAS_ROWSCALE: rowscale = tl.load(ROWSCALE + row).to(tl.float32) x *= rowscale if HAS_DROPOUT: # Compute dropout mask # 7 rounds is good enough, and reduces register pressure keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0) if STORE_DROPOUT_MASK: tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N) if HAS_X1: x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32) if HAS_ROWSCALE: rowscale = tl.load(ROWSCALE + M + row).to(tl.float32) x1 *= rowscale if HAS_DROPOUT: # Compute dropout mask # 7 rounds is good enough, and reduces register pressure keep_mask = ( tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p ) x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0) if STORE_DROPOUT_MASK: tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N) x += x1 if HAS_RESIDUAL: residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32) x += residual if STORE_RESIDUAL_OUT: tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) if not IS_RMS_NORM: mean = tl.sum(x, axis=0) / N tl.store(Mean + row, mean) xbar = tl.where(cols < N, x - mean, 0.0) var = tl.sum(xbar * xbar, axis=0) / N else: xbar = tl.where(cols < N, x, 0.0) var = tl.sum(xbar * xbar, axis=0) / N rstd = 1 / tl.sqrt(var + eps) tl.store(Rstd + row, rstd) # Normalize and apply linear transformation mask = cols < N w = tl.load(W + cols, mask=mask).to(tl.float32) if HAS_BIAS: b = tl.load(B + cols, mask=mask).to(tl.float32) x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd y = x_hat * w + b if HAS_BIAS else x_hat * w # Write output tl.store(Y + cols, y, mask=mask) if HAS_W1: w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) if HAS_B1: b1 = tl.load(B1 + cols, mask=mask).to(tl.float32) y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1 tl.store(Y1 + cols, y1, mask=mask) def _layer_norm_fwd( x, weight, bias, eps, residual=None, x1=None, weight1=None, bias1=None, dropout_p=0.0, rowscale=None, out_dtype=None, residual_dtype=None, is_rms_norm=False, return_dropout_mask=False, ): if residual is not None: residual_dtype = residual.dtype M, N = x.shape assert x.stride(-1) == 1 if residual is not None: assert residual.stride(-1) == 1 assert residual.shape == (M, N) assert weight.shape == (N,) assert weight.stride(-1) == 1 if bias is not None: assert bias.stride(-1) == 1 assert bias.shape == (N,) if x1 is not None: assert x1.shape == x.shape assert rowscale is None assert x1.stride(-1) == 1 if weight1 is not None: assert weight1.shape == (N,) assert weight1.stride(-1) == 1 if bias1 is not None: assert bias1.shape == (N,) assert bias1.stride(-1) == 1 if rowscale is not None: assert rowscale.is_contiguous() assert rowscale.shape == (M,) # allocate output y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype) assert y.stride(-1) == 1 if weight1 is not None: y1 = torch.empty_like(y) assert y1.stride(-1) == 1 else: y1 = None if ( residual is not None or (residual_dtype is not None and residual_dtype != x.dtype) or dropout_p > 0.0 or rowscale is not None or x1 is not None ): residual_out = torch.empty( M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype ) assert residual_out.stride(-1) == 1 else: residual_out = None mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None rstd = torch.empty((M,), dtype=torch.float32, device=x.device) if dropout_p > 0.0: seeds = torch.randint( 2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64 ) else: seeds = None if return_dropout_mask and dropout_p > 0.0: dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool) else: dropout_mask = None # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") with torch.cuda.device(x.device.index): _layer_norm_fwd_1pass_kernel[(M,)]( x, y, weight, bias, residual, x1, weight1, bias1, y1, residual_out, rowscale, seeds, dropout_mask, mean, rstd, x.stride(0), y.stride(0), residual.stride(0) if residual is not None else 0, residual_out.stride(0) if residual_out is not None else 0, x1.stride(0) if x1 is not None else 0, y1.stride(0) if y1 is not None else 0, M, N, eps, dropout_p, is_rms_norm, BLOCK_N, residual is not None, residual_out is not None, bias is not None, dropout_p > 0.0, dropout_mask is not None, rowscale is not None, ) # residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0 if dropout_mask is not None and x1 is not None: dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0) else: dropout_mask1 = None return ( y, y1, mean, rstd, residual_out if residual_out is not None else x, seeds, dropout_mask, dropout_mask1, ) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"], ) # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None}) # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None}) # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None}) @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None}) @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None}) @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None}) @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None}) @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None}) @triton.jit def _layer_norm_bwd_kernel( X, # pointer to the input W, # pointer to the weights B, # pointer to the biases Y, # pointer to the output to be recomputed DY, # pointer to the output gradient DX, # pointer to the input gradient DW, # pointer to the partial sum of weights gradient DB, # pointer to the partial sum of biases gradient DRESIDUAL, W1, DY1, DX1, DW1, DB1, DRESIDUAL_IN, ROWSCALE, SEEDS, Mean, # pointer to the mean Rstd, # pointer to the 1/std stride_x_row, # how much to increase the pointer when moving by 1 row stride_y_row, stride_dy_row, stride_dx_row, stride_dres_row, stride_dy1_row, stride_dx1_row, stride_dres_in_row, M, # number of rows in X N, # number of columns in X eps, # epsilon to avoid division by zero dropout_p, rows_per_program, IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_DRESIDUAL: tl.constexpr, STORE_DRESIDUAL: tl.constexpr, HAS_BIAS: tl.constexpr, HAS_DROPOUT: tl.constexpr, HAS_ROWSCALE: tl.constexpr, HAS_DY1: tl.constexpr, HAS_DX1: tl.constexpr, HAS_B1: tl.constexpr, RECOMPUTE_OUTPUT: tl.constexpr, ): # Map the program id to the elements of X, DX, and DY it should compute. row_block_id = tl.program_id(0) row_start = row_block_id * rows_per_program # Do not early exit if row_start >= M, because we need to write DW and DB cols = tl.arange(0, BLOCK_N) mask = cols < N X += row_start * stride_x_row if HAS_DRESIDUAL: DRESIDUAL += row_start * stride_dres_row if STORE_DRESIDUAL: DRESIDUAL_IN += row_start * stride_dres_in_row DY += row_start * stride_dy_row DX += row_start * stride_dx_row if HAS_DY1: DY1 += row_start * stride_dy1_row if HAS_DX1: DX1 += row_start * stride_dx1_row if RECOMPUTE_OUTPUT: Y += row_start * stride_y_row w = tl.load(W + cols, mask=mask).to(tl.float32) if RECOMPUTE_OUTPUT and HAS_BIAS: b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32) if HAS_DY1: w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) dw = tl.zeros((BLOCK_N,), dtype=tl.float32) if HAS_BIAS: db = tl.zeros((BLOCK_N,), dtype=tl.float32) if HAS_DY1: dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32) if HAS_B1: db1 = tl.zeros((BLOCK_N,), dtype=tl.float32) row_end = min((row_block_id + 1) * rows_per_program, M) for row in range(row_start, row_end): # Load data to SRAM x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) if HAS_DY1: dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32) if not IS_RMS_NORM: mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) # Compute dx xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd xhat = tl.where(mask, xhat, 0.0) if RECOMPUTE_OUTPUT: y = xhat * w + b if HAS_BIAS else xhat * w tl.store(Y + cols, y, mask=mask) wdy = w * dy dw += dy * xhat if HAS_BIAS: db += dy if HAS_DY1: wdy += w1 * dy1 dw1 += dy1 * xhat if HAS_B1: db1 += dy1 if not IS_RMS_NORM: c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd else: c1 = tl.sum(xhat * wdy, axis=0) / N dx = (wdy - xhat * c1) * rstd if HAS_DRESIDUAL: dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32) dx += dres # Write dx if STORE_DRESIDUAL: tl.store(DRESIDUAL_IN + cols, dx, mask=mask) if HAS_DX1: if HAS_DROPOUT: keep_mask = ( tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p ) dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) else: dx1 = dx tl.store(DX1 + cols, dx1, mask=mask) if HAS_DROPOUT: keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) if HAS_ROWSCALE: rowscale = tl.load(ROWSCALE + row).to(tl.float32) dx *= rowscale tl.store(DX + cols, dx, mask=mask) X += stride_x_row if HAS_DRESIDUAL: DRESIDUAL += stride_dres_row if STORE_DRESIDUAL: DRESIDUAL_IN += stride_dres_in_row if RECOMPUTE_OUTPUT: Y += stride_y_row DY += stride_dy_row DX += stride_dx_row if HAS_DY1: DY1 += stride_dy1_row if HAS_DX1: DX1 += stride_dx1_row tl.store(DW + row_block_id * N + cols, dw, mask=mask) if HAS_BIAS: tl.store(DB + row_block_id * N + cols, db, mask=mask) if HAS_DY1: tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask) if HAS_B1: tl.store(DB1 + row_block_id * N + cols, db1, mask=mask) def _layer_norm_bwd( dy, x, weight, bias, eps, mean, rstd, dresidual=None, dy1=None, weight1=None, bias1=None, seeds=None, dropout_p=0.0, rowscale=None, has_residual=False, has_x1=False, is_rms_norm=False, x_dtype=None, recompute_output=False, ): M, N = x.shape assert x.stride(-1) == 1 assert dy.stride(-1) == 1 assert dy.shape == (M, N) if dresidual is not None: assert dresidual.stride(-1) == 1 assert dresidual.shape == (M, N) assert weight.shape == (N,) assert weight.stride(-1) == 1 if bias is not None: assert bias.stride(-1) == 1 assert bias.shape == (N,) if dy1 is not None: assert weight1 is not None assert dy1.shape == dy.shape assert dy1.stride(-1) == 1 if weight1 is not None: assert weight1.shape == (N,) assert weight1.stride(-1) == 1 if bias1 is not None: assert bias1.shape == (N,) assert bias1.stride(-1) == 1 if seeds is not None: assert seeds.is_contiguous() assert seeds.shape == (M if not has_x1 else M * 2,) if rowscale is not None: assert rowscale.is_contiguous() assert rowscale.shape == (M,) # allocate output dx = ( torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device) ) dresidual_in = ( torch.empty_like(x) if has_residual and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1) else None ) dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None if recompute_output: assert weight1 is None, "recompute_output is not supported with parallel LayerNorm" # Less than 64KB per feature: enqueue fused kernel MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_N: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device) _db = ( torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) if bias is not None else None ) _dw1 = torch.empty_like(_dw) if weight1 is not None else None _db1 = torch.empty_like(_db) if bias1 is not None else None rows_per_program = math.ceil(M / sm_count) grid = (sm_count,) with torch.cuda.device(x.device.index): _layer_norm_bwd_kernel[grid]( x, weight, bias, y, dy, dx, _dw, _db, dresidual, weight1, dy1, dx1, _dw1, _db1, dresidual_in, rowscale, seeds, mean, rstd, x.stride(0), 0 if not recompute_output else y.stride(0), dy.stride(0), dx.stride(0), dresidual.stride(0) if dresidual is not None else 0, dy1.stride(0) if dy1 is not None else 0, dx1.stride(0) if dx1 is not None else 0, dresidual_in.stride(0) if dresidual_in is not None else 0, M, N, eps, dropout_p, rows_per_program, is_rms_norm, BLOCK_N, dresidual is not None, dresidual_in is not None, bias is not None, dropout_p > 0.0, ) dw = _dw.sum(0).to(weight.dtype) db = _db.sum(0).to(bias.dtype) if bias is not None else None dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None # Don't need to compute dresidual_in separately in this case if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None: dresidual_in = dx if has_x1 and dropout_p == 0.0: dx1 = dx return ( (dx, dw, db, dresidual_in, dx1, dw1, db1) if not recompute_output else (dx, dw, db, dresidual_in, dx1, dw1, db1, y) ) class LayerNormFn(torch.autograd.Function): @staticmethod def forward( ctx, x, weight, bias, residual=None, x1=None, weight1=None, bias1=None, eps=1e-6, dropout_p=0.0, rowscale=None, prenorm=False, residual_in_fp32=False, is_rms_norm=False, return_dropout_mask=False, ): x_shape_og = x.shape # reshape input data into 2D tensor x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() if residual is not None: assert residual.shape == x_shape_og residual = residual.reshape(-1, residual.shape[-1]) if residual.stride(-1) != 1: residual = residual.contiguous() if x1 is not None: assert x1.shape == x_shape_og assert rowscale is None, "rowscale is not supported with parallel LayerNorm" x1 = x1.reshape(-1, x1.shape[-1]) if x1.stride(-1) != 1: x1 = x1.contiguous() weight = weight.contiguous() if bias is not None: bias = bias.contiguous() if weight1 is not None: weight1 = weight1.contiguous() if bias1 is not None: bias1 = bias1.contiguous() if rowscale is not None: rowscale = rowscale.reshape(-1).contiguous() residual_dtype = ( residual.dtype if residual is not None else (torch.float32 if residual_in_fp32 else None) ) y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( x, weight, bias, eps, residual, x1, weight1, bias1, dropout_p=dropout_p, rowscale=rowscale, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm, return_dropout_mask=return_dropout_mask, ) ctx.save_for_backward( residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd ) ctx.x_shape_og = x_shape_og ctx.eps = eps ctx.dropout_p = dropout_p ctx.is_rms_norm = is_rms_norm ctx.has_residual = residual is not None ctx.has_x1 = x1 is not None ctx.prenorm = prenorm ctx.x_dtype = x.dtype y = y.reshape(x_shape_og) y1 = y1.reshape(x_shape_og) if y1 is not None else None residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None if not return_dropout_mask: if weight1 is None: return y if not prenorm else (y, residual_out) else: return (y, y1) if not prenorm else (y, y1, residual_out) else: if weight1 is None: return ( (y, dropout_mask, dropout_mask1) if not prenorm else (y, residual_out, dropout_mask, dropout_mask1) ) else: return ( (y, y1, dropout_mask, dropout_mask1) if not prenorm else (y, y1, residual_out, dropout_mask, dropout_mask1) ) @staticmethod def backward(ctx, dy, *args): x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors dy = dy.reshape(-1, dy.shape[-1]) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape if weight1 is not None: dy1, args = args[0], args[1:] dy1 = dy1.reshape(-1, dy1.shape[-1]) if dy1.stride(-1) != 1: dy1 = dy1.contiguous() assert dy1.shape == x.shape else: dy1 = None if ctx.prenorm: dresidual = args[0] dresidual = dresidual.reshape(-1, dresidual.shape[-1]) if dresidual.stride(-1) != 1: dresidual = dresidual.contiguous() assert dresidual.shape == x.shape else: dresidual = None dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd( dy, x, weight, bias, ctx.eps, mean, rstd, dresidual, dy1, weight1, bias1, seeds, ctx.dropout_p, rowscale, ctx.has_residual, ctx.has_x1, ctx.is_rms_norm, x_dtype=ctx.x_dtype, ) return ( dx.reshape(ctx.x_shape_og), dw, db, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, dx1.reshape(ctx.x_shape_og) if dx1 is not None else None, dw1, db1, None, None, None, None, None, None, None, ) def layer_norm_fn( x, weight, bias, residual=None, x1=None, weight1=None, bias1=None, eps=1e-6, dropout_p=0.0, rowscale=None, prenorm=False, residual_in_fp32=False, is_rms_norm=False, return_dropout_mask=False, ): return LayerNormFn.apply( x, weight, bias, residual, x1, weight1, bias1, eps, dropout_p, rowscale, prenorm, residual_in_fp32, is_rms_norm, return_dropout_mask, ) def rms_norm_fn( x, weight, bias, residual=None, x1=None, weight1=None, bias1=None, eps=1e-6, dropout_p=0.0, rowscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False, ): return LayerNormFn.apply( x, weight, bias, residual, x1, weight1, bias1, eps, dropout_p, rowscale, prenorm, residual_in_fp32, True, return_dropout_mask, ) class RMSNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps if dropout_p > 0.0: self.drop = torch.nn.Dropout(dropout_p) else: self.drop = None self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self): torch.nn.init.ones_(self.weight) def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): return rms_norm_fn( x, self.weight, self.bias, residual=residual, eps=self.eps, dropout_p=self.drop.p if self.drop is not None and self.training else 0.0, prenorm=prenorm, residual_in_fp32=residual_in_fp32, ) class LayerNormLinearFn(torch.autograd.Function): @staticmethod @custom_fwd def forward( ctx, x, norm_weight, norm_bias, linear_weight, linear_bias, residual=None, eps=1e-6, prenorm=False, residual_in_fp32=False, is_rms_norm=False, ): x_shape_og = x.shape # reshape input data into 2D tensor x = x.reshape(-1, x.shape[-1]) if x.stride(-1) != 1: x = x.contiguous() if residual is not None: assert residual.shape == x_shape_og residual = residual.reshape(-1, residual.shape[-1]) if residual.stride(-1) != 1: residual = residual.contiguous() norm_weight = norm_weight.contiguous() if norm_bias is not None: norm_bias = norm_bias.contiguous() residual_dtype = ( residual.dtype if residual is not None else (torch.float32 if residual_in_fp32 else None) ) y, _, mean, rstd, residual_out, *rest = _layer_norm_fwd( x, norm_weight, norm_bias, eps, residual, out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(), residual_dtype=residual_dtype, is_rms_norm=is_rms_norm, ) y = y.reshape(x_shape_og) dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype linear_weight = linear_weight.to(dtype) linear_bias = linear_bias.to(dtype) if linear_bias is not None else None out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias) # We don't store y, will be recomputed in the backward pass to save memory ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd) ctx.x_shape_og = x_shape_og ctx.eps = eps ctx.is_rms_norm = is_rms_norm ctx.has_residual = residual is not None ctx.prenorm = prenorm ctx.x_dtype = x.dtype ctx.linear_bias_is_none = linear_bias is None return out if not prenorm else (out, residual_out.reshape(x_shape_og)) @staticmethod @custom_bwd def backward(ctx, dout, *args): x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors dout = dout.reshape(-1, dout.shape[-1]) dy = F.linear(dout, linear_weight.t()) dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0) if dy.stride(-1) != 1: dy = dy.contiguous() assert dy.shape == x.shape if ctx.prenorm: dresidual = args[0] dresidual = dresidual.reshape(-1, dresidual.shape[-1]) if dresidual.stride(-1) != 1: dresidual = dresidual.contiguous() assert dresidual.shape == x.shape else: dresidual = None dx, dnorm_weight, dnorm_bias, dresidual_in, _, _, _, y = _layer_norm_bwd( dy, x, norm_weight, norm_bias, ctx.eps, mean, rstd, dresidual=dresidual, has_residual=ctx.has_residual, is_rms_norm=ctx.is_rms_norm, x_dtype=ctx.x_dtype, recompute_output=True, ) dlinear_weight = torch.einsum("bo,bi->oi", dout, y) return ( dx.reshape(ctx.x_shape_og), dnorm_weight, dnorm_bias, dlinear_weight, dlinear_bias, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, None, None, None, None, ) def layer_norm_linear_fn( x, norm_weight, norm_bias, linear_weight, linear_bias, residual=None, eps=1e-6, prenorm=False, residual_in_fp32=False, is_rms_norm=False, ): return LayerNormLinearFn.apply( x, norm_weight, norm_bias, linear_weight, linear_bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm, )