// Adapted from https://github.com/NVIDIA/apex/blob/master/csrc/fused_dense.cpp // We make it work for bfloat16 #include #include #include #include #include #include #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")") // https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h // #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 #define DISPATCH_HALF_AND_BF16(TYPE, NAME, ...) \ switch (TYPE) { \ case at::ScalarType::Half: { \ using scalar_t = at::Half; \ __VA_ARGS__(); \ break; \ } \ case at::ScalarType::BFloat16: { \ using scalar_t = at::BFloat16; \ __VA_ARGS__(); \ break; \ } \ default: \ AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \ } template int linear_bias_wgrad_cuda(const T *input, const T *d_output, int64_t in_features, int64_t batch_size, int64_t out_features, T *d_weight, T *d_bias, void *lt_workspace, size_t workspaceSize); template int linear_act_forward_cuda(const T *input, const T *weight, const T *bias, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *output, void *pre_act, void *lt_workspace, size_t workspaceSize); template int bias_act_linear_dgrad_bgrad_cuda(const T *weight, const T *d_output, const void *pre_act, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *d_input, T *d_bias, void *lt_workspace, size_t workspaceSize); std::vector linear_bias_wgrad(at::Tensor input, at::Tensor d_output, bool has_d_bias) { int64_t batch_size = input.size(0); int64_t in_features = input.size(1); int64_t out_features = d_output.size(1); TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16); TORCH_CHECK(input.dtype() == d_output.dtype()); TORCH_CHECK(input.is_cuda()); TORCH_CHECK(d_output.is_cuda()); TORCH_CHECK(input.is_contiguous()); TORCH_CHECK(d_output.is_contiguous()); CHECK_SHAPE(input, batch_size, in_features); CHECK_SHAPE(d_output, batch_size, out_features); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)input.get_device()}; // create output/workspace tensor auto opts = input.options(); auto d_weight = at::empty({out_features, in_features}, opts); at::Tensor d_bias; if (has_d_bias) { #if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600 d_bias = d_output.view({-1, out_features}).sum(0, false); #else d_bias = at::empty({out_features}, opts); #endif } // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M. // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91 size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4); auto lt_workspace = at::empty({static_cast(workspaceSize)}, opts.dtype(torch::kUInt8)); DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_wgrad", [&] { auto result = linear_bias_wgrad_cuda( input.data_ptr(), d_output.data_ptr(), in_features, batch_size, out_features, d_weight.data_ptr(), has_d_bias ? d_bias.data_ptr() : nullptr, (void*) (lt_workspace.data_ptr()), workspaceSize); TORCH_CHECK(result == 0, "linear_bias_wgrad failed."); }); return {d_weight, d_bias}; } std::vector linear_act_forward(at::Tensor input, at::Tensor weight, c10::optional bias_, bool is_gelu, bool save_pre_act, int heuristic) { int64_t batch_size = input.size(0); int64_t in_features = input.size(1); int64_t out_features = weight.size(0); TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16); TORCH_CHECK(input.dtype() == weight.dtype()); TORCH_CHECK(input.is_cuda()); TORCH_CHECK(weight.is_cuda()); TORCH_CHECK(input.is_contiguous()); TORCH_CHECK(weight.is_contiguous()); CHECK_SHAPE(input, batch_size, in_features); CHECK_SHAPE(weight, out_features, in_features); if (bias_.has_value()) { auto bias = bias_.value(); TORCH_CHECK(bias.dtype() == input.dtype()); TORCH_CHECK(bias.is_cuda()); TORCH_CHECK(bias.is_contiguous()); CHECK_SHAPE(bias, out_features); } // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)input.get_device()}; // create output/workspace tensor auto opts = input.options(); auto output = at::empty({batch_size, out_features}, opts); at::Tensor pre_act; // If ReLU, cuBlasLT stores a bit-mask (1 bit per element) if (save_pre_act) { pre_act = at::empty({batch_size, is_gelu ? out_features : out_features / 8}, is_gelu ? opts : opts.dtype(torch::kUInt8)); } // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M. // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91 size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4); auto lt_workspace = at::empty({static_cast(workspaceSize)}, opts.dtype(torch::kUInt8)); DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_act_forward", [&] { auto result = linear_act_forward_cuda( input.data_ptr(), weight.data_ptr(), bias_.has_value()? bias_.value().data_ptr() : nullptr, in_features, batch_size, out_features, is_gelu, heuristic, output.data_ptr(), save_pre_act ? pre_act.data_ptr() : nullptr, (void*) (lt_workspace.data_ptr()), workspaceSize); TORCH_CHECK(result == 0, "linear_act_forward failed."); }); std::vector result = {output}; if (save_pre_act) { result.push_back(pre_act); }; return result; } std::vector bias_act_linear_dgrad_bgrad( at::Tensor weight, at::Tensor d_output, at::Tensor pre_act, bool is_gelu, int heuristic ) { int64_t batch_size = d_output.size(0); int64_t out_features = d_output.size(1); int64_t in_features = weight.size(1); TORCH_CHECK(weight.dtype() == torch::kFloat16 || weight.dtype() == torch::kBFloat16); TORCH_CHECK(weight.dtype() == d_output.dtype()); TORCH_CHECK(is_gelu ? (pre_act.dtype() == weight.dtype()) : (pre_act.dtype() == torch::kUInt8)); TORCH_CHECK(weight.is_cuda()); TORCH_CHECK(d_output.is_cuda()); TORCH_CHECK(pre_act.is_cuda()); TORCH_CHECK(weight.is_contiguous()); TORCH_CHECK(d_output.is_contiguous()); TORCH_CHECK(pre_act.is_contiguous()); CHECK_SHAPE(weight, out_features, in_features); CHECK_SHAPE(d_output, batch_size, out_features); // If ReLU, cuBlasLT stores a bit-mask (1 bit per element) CHECK_SHAPE(pre_act, batch_size, is_gelu ? in_features : in_features / 8); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)weight.get_device()}; // create output/workspace tensor auto opts = weight.options(); auto d_bias = at::empty({in_features}, opts); auto d_input = at::empty({batch_size, in_features}, opts); // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M. // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91 size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4); auto lt_workspace = at::empty({static_cast(workspaceSize)}, opts.dtype(torch::kUInt8)); DISPATCH_HALF_AND_BF16(weight.scalar_type(), "bias_act_linear_dgrad_bgrad", [&] { auto result = bias_act_linear_dgrad_bgrad_cuda( weight.data_ptr(), d_output.data_ptr(), pre_act.data_ptr(), in_features, batch_size, out_features, is_gelu, heuristic, d_input.data_ptr(), d_bias.data_ptr(), (void*) (lt_workspace.data_ptr()), workspaceSize); TORCH_CHECK(result == 0, "bias_act_linear_dgrad_bgrad failed."); }); return {d_input, d_bias}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("linear_bias_wgrad", &linear_bias_wgrad, "linear bias wgrad"); m.def("linear_act_forward", &linear_act_forward, "linear gelu/relu forward"); m.def("bias_act_linear_dgrad_bgrad", &bias_act_linear_dgrad_bgrad, "bias gelu/relu linear dgrad bgrad"); }