/****************************************************************************** * Copyright (c) 2024, Tri Dao. ******************************************************************************/ #include "flash_common.hpp" #include "fmha_fwd.hpp" #include "mask.hpp" fmha_fwd_traits get_ck_fmha_varlen_fwd_traits(const mask_info &mask, std::string dtype, int head_size, bool has_dropout, bool has_lse, bool enable_alibi) { return fmha_fwd_traits{head_size, head_size, dtype, true, // is_group_mode true, // is_v_rowmajor mask.type, enable_alibi ? bias_enum::alibi : bias_enum::no_bias, has_lse, has_dropout, false}; // do_fp8_static_quant } fmha_fwd_args get_ck_fmha_varlen_fwd_args(bool has_lse, bool has_dropout_randval, const mask_info &mask, // sizes const int b, const int max_seqlen_q, const int h, const int h_k, const int d, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, const at::Tensor seqlens_q, const at::Tensor seqlens_k, c10::optional &alibi_slopes_, at::Tensor out, at::Tensor softmax_lse, at::Tensor dropout_randval, float softmax_scale, float p_dropout, uint64_t drop_seed, uint64_t drop_offset) { // q: (total_q, nheads, d) // k: (total_k, nheads_k, d) // v: (total_k, nheads_k, d) // o: (total_q, nheads, d) // alibi_slopes:(batch, nheads) or (nhead) // lse: (batch, nheads, max_seqlen_q) // randval: (nheads, total_q, max_seqlen_k) ck_tile::index_t total_q = q.size(0); ck_tile::index_t total_k = k.size(0); ck_tile::index_t stride_q = q.stride(0); ck_tile::index_t stride_k = k.stride(0); ck_tile::index_t stride_v = v.stride(0); ck_tile::index_t stride_o = out.stride(0); ck_tile::index_t stride_randval = has_dropout_randval ? dropout_randval.stride(1) : 0; ck_tile::index_t nhead_stride_q = q.stride(1); ck_tile::index_t nhead_stride_k = k.stride(1); ck_tile::index_t nhead_stride_v = v.stride(1); ck_tile::index_t nhead_stride_o = out.stride(1); ck_tile::index_t nhead_stride_lse = has_lse ? softmax_lse.stride(1) : 0; ck_tile::index_t nhead_stride_randval = has_dropout_randval ? dropout_randval.stride(0) : 0; ck_tile::index_t batch_stride_q = 0; ck_tile::index_t batch_stride_k = 0; ck_tile::index_t batch_stride_v = 0; ck_tile::index_t batch_stride_o = 0; ck_tile::index_t batch_stride_lse = has_lse ? softmax_lse.stride(0) : 0; ck_tile::index_t batch_stride_randval = 0; void *alibi_slopes_ptr = nullptr; ck_tile::index_t stride_alibi_slopes = 0; if (alibi_slopes_.has_value()) { auto alibi_slopes = alibi_slopes_.value(); CHECK_DEVICE(alibi_slopes); TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension"); TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({h}) || alibi_slopes.sizes() == torch::IntArrayRef({b, h})); alibi_slopes_ptr = alibi_slopes.data_ptr(); stride_alibi_slopes = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0; } return fmha_fwd_args{q.data_ptr(), k.data_ptr(), v.data_ptr(), alibi_slopes_ptr, // bias has_dropout_randval ? dropout_randval.data_ptr() : nullptr, nullptr, // lse_acc nullptr, // o_acc has_lse ? softmax_lse.data_ptr() : nullptr, out.data_ptr(), seqlens_q.data_ptr(), // seqstart_q seqlens_k.data_ptr(), // seqstart_k nullptr, // seqlen_kpads total_q, total_k, b, max_seqlen_q, d, // hdim_q d, // hdim_v h, // nhead h_k, // nhead_k 1, // num_splits softmax_scale, // scale_s 1, // scale_p 1, // scale_o stride_q, stride_k, stride_v, stride_alibi_slopes, stride_randval, 0, // stride_o_acc, stride_o, nhead_stride_q, nhead_stride_k, nhead_stride_v, 0, // nhead_stride_bias, FA without bias nhead_stride_randval, nhead_stride_lse, 0, // nhead_stride_lse_acc 0, // nhead_stride_o_acc nhead_stride_o, batch_stride_q, batch_stride_k, batch_stride_v, 0, // batch_stride_bias, FA without bias batch_stride_randval, batch_stride_lse, 0, // batch_stride_lse_acc 0, // batch_stride_o_acc batch_stride_o, 0, // split_stride_lse_acc 0, // split_stride_o_acc mask.left, mask.right, static_cast(mask.type), p_dropout, has_dropout_randval, {drop_seed, drop_offset}}; } std::vector mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. c10::optional &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens_q, // b+1 const at::Tensor &cu_seqlens_k, // b+1 c10::optional & /*seqused_k*/, c10::optional &/*leftpad_k_*/, // batch_size c10::optional &block_table_, // batch_size x max_num_blocks_per_seq c10::optional &alibi_slopes_, // num_heads or b x num_heads int max_seqlen_q, const int max_seqlen_k, const float p_dropout, const float softmax_scale, const bool zero_tensors, bool is_causal, int window_size_left, int window_size_right, const float /*softcap*/, const bool return_dropout_randval, c10::optional gen_) { auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); std::string q_dtype_str = q_dtype == torch::kFloat16 ? "fp16" : "bf16"; CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); // TODO - Support paged_KV const bool paged_KV = block_table_.has_value(); TORCH_CHECK(!paged_KV, "CK does not support paged_KV yet"); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); CHECK_CONTIGUOUS(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_k); const auto sizes = q.sizes(); const int batch_size = cu_seqlens_q.numel() - 1; int num_heads = sizes[1]; const int head_size_og = sizes[2]; const int num_heads_k = k.size(1); const int max_num_blocks_per_seq = 0; const int num_blocks = 0; if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } // causal=true is the same as causal=false in this case // TODO // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case // H/t Daniel Haziza const int total_q = q.size(0); const int total_k = k.size(0); TORCH_CHECK(batch_size > 0, "batch size must be postive"); TORCH_CHECK(head_size_og <= 256, "CK only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (window_size_left >= max_seqlen_k) { window_size_left = -1; } if (window_size_right >= max_seqlen_k) { window_size_right = -1; } mask_info mask; if (is_causal) { // Causal is the special case where window_size_right == 0 and window_size_left < 0. window_size_right = 0; std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + "0"; mask = mask_info::decode(mask_identify, max_seqlen_q, max_seqlen_k); // casual } else if (window_size_left == -1 && window_size_right == -1) { mask = mask_info::decode("0", max_seqlen_q, max_seqlen_k); // no mask } else { // Local is the more general case where window_size_right >= 0 or window_size_left >= 0. std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + std::to_string(window_size_right); mask = mask_info::decode(mask_identify, max_seqlen_q, max_seqlen_k); // local } CHECK_SHAPE(q, total_q, num_heads, head_size_og); CHECK_SHAPE(k, total_k, num_heads_k, head_size_og); CHECK_SHAPE(v, total_k, num_heads_k, head_size_og); CHECK_SHAPE(cu_seqlens_q, batch_size + 1); CHECK_SHAPE(cu_seqlens_k, batch_size + 1); at::Tensor q_padded, k_padded, v_padded; if (head_size_og % 8 != 0) { q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { q_padded = q; k_padded = k; v_padded = v; } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, total_q, num_heads, head_size_og); if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } } else { out = torch::empty_like(q_padded); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_8x = round_multiple(head_size_og, 8); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); bool has_lse = true; bool has_dropout = p_dropout > 0.0f; at::Tensor softmax_lse; // TODO - check gradient, only training require lse softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(torch::kFloat32)); at::Tensor p; if (return_dropout_randval) { TORCH_CHECK(has_dropout, "return_dropout_randval require p_dropout > 0"); p = torch::empty({num_heads, total_q, max_seqlen_k}, opts.dtype(torch::kUInt8)); } if (zero_tensors) { out.zero_(); softmax_lse.fill_(-std::numeric_limits::infinity()); if (return_dropout_randval) {p.zero_();} } uint64_t drop_seed = 1, drop_offset = 0; int64_t counter_offset = batch_size * num_heads * ck_tile::get_warp_size(); auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); if (p_dropout > 0.0) { auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); auto philox_args = gen->philox_cuda_state(counter_offset); std::tie(drop_seed, drop_offset) = flash::unpack(philox_args); } rng_state[0] = *(reinterpret_cast(&drop_seed)); rng_state[1] = *(reinterpret_cast(&drop_offset)); if (max_seqlen_k > 0) { auto stream = at::cuda::getCurrentHIPStream().stream(); ck_tile::stream_config stream_config{stream}; auto traits = get_ck_fmha_varlen_fwd_traits(mask, q_dtype_str, head_size_8x, has_dropout, has_lse, alibi_slopes_.has_value()); auto args = get_ck_fmha_varlen_fwd_args( has_lse, return_dropout_randval, mask, batch_size, max_seqlen_q, num_heads, num_heads_k, head_size_8x, q_padded, k_padded, v_padded, cu_seqlens_q, cu_seqlens_k, alibi_slopes_, out, softmax_lse, p, softmax_scale, p_dropout, drop_seed, drop_offset); fmha_fwd(traits, args, stream_config); } else { // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0. out.zero_(); softmax_lse.fill_(std::numeric_limits::infinity()); } at::Tensor out_padded = out; if (head_size_og % 8 != 0) { out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); if (out_.has_value()) { out_.value().copy_(out); } } return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state}; }