from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F import time try: import cudnn except ImportError: cudnn = None from einops import rearrange, repeat # from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_func from flash_attn_interface import flash_attn_func as flash_attn_func_v3, flash_attn_varlen_func as flash_attn_varlen_func_v3 # Need to install triton nightly: # pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly try: from triton_fused_attention import attention as triton_attention except ImportError: triton_attention = None def flops(batch, nheads, seqlen_q, seqlen_k, headdim, causal=False, mode='fwd'): assert mode in ["fwd", "bwd", "fwd_bwd"] f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) def convert_to_cudnn_type(torch_type): if torch_type == torch.float16: return cudnn.data_type.HALF elif torch_type == torch.bfloat16: return cudnn.data_type.BFLOAT16 elif torch_type == torch.float32: return cudnn.data_type.FLOAT elif torch_type == torch.int32: return cudnn.data_type.INT32 elif torch_type == torch.int64: return cudnn.data_type.INT64 else: raise ValueError("Unsupported tensor data type.") def cudnn_sdpa_setup(q, k, v, grad, o, stats, causal=False, varlen=False, seqlens=None): b, nheads, seqlen_q, headdim = q.shape _, nheads_kv, seqlen_k, _ = k.shape assert v.shape == (b, nheads_kv, seqlen_k, headdim) assert cudnn is not None, 'CUDNN is not available' q_gpu, k_gpu, v_gpu = q, k, v o_gpu, stats_gpu = o, stats graph_forward = cudnn.pygraph( io_data_type=convert_to_cudnn_type(q.dtype), intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) q_forward = graph_forward.tensor_like(q_gpu.detach()) k_forward = graph_forward.tensor_like(k_gpu.detach()) v_forward = graph_forward.tensor_like(v_gpu.detach()) seqlens_reshaped = seqlens if varlen else None seq_len_q = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None seq_len_kv = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None o_forward, stats_forward = graph_forward.sdpa( name="sdpa", q=q_forward, k=k_forward, v=v_forward, is_inference=False, attn_scale=1.0 / math.sqrt(headdim), use_causal_mask=causal, use_padding_mask=varlen, seq_len_q=seq_len_q, seq_len_kv=seq_len_kv, ) o_forward.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride()) stats_forward.set_output(True).set_data_type(cudnn.data_type.FLOAT) graph_forward.validate() graph_forward.build_operation_graph() graph_forward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph_forward.check_support() graph_forward.build_plans() variant_pack_forward = { q_forward: q_gpu, k_forward: k_gpu, v_forward: v_gpu, o_forward: o_gpu, stats_forward: stats_gpu, seq_len_q: seqlens_reshaped, seq_len_kv: seqlens_reshaped, } dQ_gpu = torch.empty_like(q_gpu) dK_gpu = torch.empty_like(k_gpu) dV_gpu = torch.empty_like(v_gpu) dO_gpu = grad graph_backward = cudnn.pygraph( io_data_type=cudnn.data_type.HALF, intermediate_data_type=cudnn.data_type.FLOAT, compute_data_type=cudnn.data_type.FLOAT, ) q_backward = graph_backward.tensor_like(q_gpu.detach()) k_backward = graph_backward.tensor_like(k_gpu.detach()) v_backward = graph_backward.tensor_like(v_gpu.detach()) o_backward = graph_backward.tensor_like(o_gpu.detach()) dO_backward = graph_backward.tensor_like(dO_gpu.detach()) stats_backward = graph_backward.tensor_like(stats_gpu.detach()) seq_len_q = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None seq_len_kv = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None dQ_backward, dK_backward, dV_backward = graph_backward.sdpa_backward( name="sdpa_backward", q=q_backward, k=k_backward, v=v_backward, o=o_backward, dO=dO_backward, stats=stats_backward, attn_scale=1.0 / math.sqrt(headdim), use_causal_mask=causal, use_padding_mask=varlen, seq_len_q=seq_len_q, seq_len_kv=seq_len_kv, ) dQ_backward.set_output(True).set_dim(dQ_gpu.size()).set_stride(dQ_gpu.stride()) dK_backward.set_output(True).set_dim(dK_gpu.size()).set_stride(dK_gpu.stride()) dV_backward.set_output(True).set_dim(dV_gpu.size()).set_stride(dV_gpu.stride()) graph_backward.validate() graph_backward.build_operation_graph() graph_backward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK]) graph_backward.check_support() graph_backward.build_plans() variant_pack_backward = { q_backward: q_gpu, k_backward: k_gpu, v_backward: v_gpu, o_backward: o_gpu, dO_backward: dO_gpu, stats_backward: stats_gpu, dQ_backward: dQ_gpu, dK_backward: dK_gpu, dV_backward: dV_gpu, seq_len_q: seqlens_reshaped, seq_len_kv: seqlens_reshaped, } workspace = torch.empty( max(graph_forward.get_workspace_size(), graph_backward.get_workspace_size()), device="cuda", dtype=torch.uint8 ) def run_fwd(*args, **kwargs): graph_forward.execute(variant_pack_forward, workspace) return o_gpu, stats_gpu def run_bwd(*args, **kwargs): graph_backward.execute(variant_pack_backward, workspace) return dQ_gpu, dK_gpu, dV_gpu return run_fwd, run_bwd torch.manual_seed(0) repeats = 100 dropout_p = 0.0 causal = False dtype = torch.float16 device = 'cuda' verbose = False batch_size = 2 # seqlen = 2048 seqlen = 8192 # seqlen = 4096 # seqlen = 2047 dim = 2048 # headdim = 128 # headdim = 64 headdim = 256 for mode in ['fwd', 'bwd']: # for mode in ['bwd']: for headdim in [64, 128, 256]: # for headdim in [128]: for seqlen in [1024, 2048, 4096, 8192, 16384, 32768]: # for seqlen in [8192]: nheads = dim // headdim # nheads = 24 # headdim = 64 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 # nheads = 16 # headdim = 128 nheads_kv = nheads # nheads_kv = 1 qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) k = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype, requires_grad=True) v = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype, requires_grad=True) q_t = q.transpose(1, 2).contiguous().detach().requires_grad_() k_t = k.transpose(1, 2).contiguous().detach().requires_grad_() v_t = k.transpose(1, 2).contiguous().detach().requires_grad_() grad = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype) grad_t = grad.transpose(1, 2).contiguous() o_t = torch.empty_like(q.transpose(1, 2)) stats = torch.empty(batch_size, nheads, seqlen, 1, dtype=torch.float32, device=q.device) bench_fn = benchmark_forward if mode == 'fwd' else partial(benchmark_backward, grad=grad) for causal in [False, True]: # for causal in [True]: print(f"\n### {mode = }, {batch_size = }, {headdim = }, {seqlen = }, {causal = } ###") # For var-seq-len lens = torch.full([q.shape[0]], seqlen, dtype=torch.int32) seqlens_cudnn = lens.reshape(batch_size, 1, 1, 1).contiguous().cuda() cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), torch.cumsum(lens, dim=0, dtype=torch.int32)]).cuda() if headdim <= 128 and cudnn is not None: cudnn_sdpa_fwd, cudnn_sdpa_bwd = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), o_t, stats, causal=causal) cudnn_sdpa_fwd_varlen, cudnn_sdpa_bwd_varlen = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), o_t, stats, causal=causal, varlen=True, seqlens=seqlens_cudnn) f = flops(batch_size, nheads, seqlen, seqlen, headdim, causal=causal, mode=mode) ref_o = flash_attn_func(q, k, v, dropout_p, causal=causal) _, m0 = bench_fn(flash_attn_func, q, k, v, dropout_p, causal=causal, repeats=repeats, verbose=verbose, desc='Fav2') if mode == 'bwd': ref_dv, v.grad = v.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dq, q.grad = q.grad.clone(), None # pytorch_profiler(flash_attn_func, q, k, v, dropout_p, causal=causal, backward=False) if headdim <= 128: if triton_attention is not None and nheads_kv == nheads: if mode == 'fwd': time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark _, m3 = benchmark_forward(triton_attention, q_t, k_t, v_t, causal, 1 / math.sqrt(headdim), repeats=repeats, verbose=verbose, desc='Triton') # TODO: fix Triton numeric errors. # if mode == 'bwd': # dv, v_t.grad = v_t.grad.clone(), None # dk, k_t.grad = k_t.grad.clone(), None # dq, q_t.grad = q_t.grad.clone(), None # torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05) # torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05) # torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05) if cudnn is not None: time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark if mode == 'fwd': _, m2 = benchmark_forward(cudnn_sdpa_fwd, repeats=repeats, verbose=verbose, desc='CuDNN') _, m2_var = benchmark_forward(cudnn_sdpa_fwd_varlen, repeats=repeats, verbose=verbose, desc='CuDNN') cudnn_sdpa_fwd() torch.testing.assert_close(ref_o, o_t.transpose(1, 2), atol=0.05, rtol=0.05) cudnn_sdpa_fwd_varlen() torch.testing.assert_close(ref_o, o_t.transpose(1, 2), atol=0.05, rtol=0.05) else: cudnn_sdpa_fwd() _, m2 = benchmark_forward(cudnn_sdpa_bwd, repeats=repeats, verbose=verbose, desc='CuDNN') _, m2_var = benchmark_forward(cudnn_sdpa_bwd_varlen, repeats=repeats, verbose=verbose, desc='CuDNN') dq, dk, dv = cudnn_sdpa_bwd() torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05) dq, dk, dv = cudnn_sdpa_bwd_varlen() torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05) # pytorch_profiler(cudnn_sdpa, backward=False) if headdim <= 128 or mode == 'fwd': time.sleep(1) _, m1 = bench_fn(flash_attn_func_v3, q, k, v, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3') q_var = q.reshape(-1, q.shape[-2], q.shape[-1]) k_var = k.reshape(-1, k.shape[-2], k.shape[-1]) v_var = v.reshape(-1, v.shape[-2], v.shape[-1]) time.sleep(1) if mode == 'bwd': dv, v.grad = v.grad.clone(), None dk, k.grad = k.grad.clone(), None dq, q.grad = q.grad.clone(), None torch.testing.assert_close(ref_dv, dv, atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dk, dk, atol=0.05, rtol=0.05) torch.testing.assert_close(ref_dq, dq, atol=0.05, rtol=0.05) bench_var_fn = bench_fn if mode == 'bwd': grad_var = grad.reshape(-1, grad.shape[-2], grad.shape[-1]) bench_var_fn = partial(benchmark_backward, grad=grad_var) _, m1_var = bench_var_fn(flash_attn_varlen_func_v3, q_var, k_var, v_var, cu_seqlens, cu_seqlens, seqlen, seqlen, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3 var len') # pytorch_profiler(flash_attn_func_v3, q, k, v, causal=causal, backward=False) print(f'Fav2: {m0.mean * 1e3:.3f}ms, {(f / m0.mean * 1e-12):.1f} TFLOPS') if headdim <= 128: if mode == 'fwd' and triton_attention is not None and nheads_kv == nheads: print(f'Triton: {m3.mean * 1e3:.3f}ms, {(f / m3.mean * 1e-12):.1f} TFLOPS') if cudnn is not None: print(f'CuDNN: {m2.mean * 1e3:.3f}ms, {(f / m2.mean * 1e-12):.1f} TFLOPS') print(f'CuDNN varlen: {m2_var.mean * 1e3:.3f}ms, {(f / m2_var.mean * 1e-12):.1f} TFLOPS') if headdim <= 128 or mode == 'fwd': print(f'Fav3: {m1.mean * 1e3:.3f}ms, {(f / m1.mean * 1e-12):.1f} TFLOPS') print(f'Fav3 varlen: {m1_var.mean * 1e3:.3f}ms, {(f / m1_var.mean * 1e-12):.1f} TFLOPS')