# Copyright (c) 2023, Tri Dao. import math import re from collections import OrderedDict import torch import torch.nn.functional as F from transformers import GPT2Config, GPTJConfig def remap_state_dict_hf_gptj(state_dict, config): def key_mapping_layers(key): return re.sub(r"^transformer.h.", "transformer.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # Word embedding def key_mapping_emb(key): return re.sub(r"^transformer.wte.", "transformer.embeddings.word_embeddings.", key) state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) if getattr(config, "tie_word_embeddings"): state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] else: output_embeddings = state_dict.pop("lm_head.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. state_dict["lm_head.weight"] = F.pad( output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) ) output_embeddings_bias = state_dict.pop("lm_head.bias") state_dict["lm_head.bias"] = F.pad( output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0]) ) # LayerNorm def key_mapping_ln(key): return re.sub(r"^transformer.layers.(\d+).ln_1.", r"transformer.layers.\1.norm1.", key) state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^transformer.layers.(\d+).mlp.fc_in.", r"transformer.layers.\1.mlp.fc1.", key ) key = re.sub( r"^transformer.layers.(\d+).mlp.fc_out.", r"transformer.layers.\1.mlp.fc2.", key ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for l in range(config.n_layer): Wq = state_dict.pop(f"transformer.layers.{l}.attn.q_proj.weight") Wk = state_dict.pop(f"transformer.layers.{l}.attn.k_proj.weight") Wv = state_dict.pop(f"transformer.layers.{l}.attn.v_proj.weight") state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0) # We don't store these biases state_dict.pop(f"transformer.layers.{l}.attn.bias") state_dict.pop(f"transformer.layers.{l}.attn.masked_bias") def key_mapping_attn(key): return re.sub( r"^transformer.layers.(\d+).attn.out_proj.", r"transformer.layers.\1.mixer.out_proj.", key, ) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def gptj_config_to_gpt2_config(gptj_config: GPTJConfig) -> GPT2Config: headdim = gptj_config.n_embd // gptj_config.n_head return GPT2Config( vocab_size=gptj_config.vocab_size, n_positions=0, # No absolute position embedding n_embd=gptj_config.n_embd, n_layer=gptj_config.n_layer, n_head=gptj_config.n_head, n_inner=gptj_config.n_inner, activation_function=gptj_config.activation_function, resid_pdrop=gptj_config.resid_pdrop, embd_pdrop=gptj_config.embd_pdrop, attn_pdrop=gptj_config.attn_pdrop, layer_norm_epsilon=gptj_config.layer_norm_epsilon, initializer_range=gptj_config.initializer_range, bos_token_id=gptj_config.bos_token_id, eos_token_id=gptj_config.eos_token_id, # These are new arguments not in the original GPT2Config prenorm=True, parallel_block=True, parallel_block_tied_norm=True, rotary_emb_fraction=gptj_config.rotary_dim / headdim, rotary_emb_interleaved=True, tie_word_embeddings=False, qkv_proj_bias=False, out_proj_bias=False, lm_head_bias=True, )