# Copyright (c) 2023, Tri Dao. import math import re from collections import OrderedDict import torch import torch.nn.functional as F from einops import rearrange from transformers import GPT2Config, GPTNeoXConfig def remap_state_dict_hf_gpt_neox(state_dict, config): def key_mapping_layers(key): return re.sub(r"^gpt_neox.", "transformer.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # Word embedding def key_mapping_emb(key): return re.sub(r"^transformer.embed_in.", "transformer.embeddings.word_embeddings.", key) state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) if getattr(config, "tie_word_embeddings", False): state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] else: output_embeddings = state_dict.pop("embed_out.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. state_dict["lm_head.weight"] = F.pad( output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) ) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key) key = re.sub( r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key ) key = re.sub( r"^transformer.layers.(\d+).post_attention_layernorm.", r"transformer.layers.\1.norm2.", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key ) key = re.sub( r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for l in range(config.n_layer): # We don't store these biases state_dict.pop(f"transformer.layers.{l}.attention.bias") state_dict.pop(f"transformer.layers.{l}.attention.masked_bias") # We don't store these state_dict.pop(f"transformer.layers.{l}.attention.rotary_emb.inv_freq", None) # GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim) # while we store Wqkv as ((3 nheads headdim), hidden_dim) headdim = config.hidden_size // config.num_attention_heads Wqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.weight") state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = rearrange( Wqkv, "(nheads three headdim) ... -> (three nheads headdim) ...", three=3, headdim=headdim, ) bqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.bias") state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = rearrange( bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim ) def key_mapping_attn(key): key = re.sub( r"^transformer.layers.(\d+).attention.dense.", r"transformer.layers.\1.mixer.out_proj.", key, ) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config: assert gpt_neox_config.rotary_emb_base == 10000 return GPT2Config( vocab_size=gpt_neox_config.vocab_size, n_positions=0, # No absolute position embedding n_embd=gpt_neox_config.hidden_size, n_layer=gpt_neox_config.num_hidden_layers, n_head=gpt_neox_config.num_attention_heads, n_inner=gpt_neox_config.intermediate_size, activation_function=gpt_neox_config.hidden_act, resid_pdrop=0.0, # No dropout embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=gpt_neox_config.layer_norm_eps, initializer_range=gpt_neox_config.initializer_range, bos_token_id=gpt_neox_config.bos_token_id, eos_token_id=gpt_neox_config.eos_token_id, # These are new arguments not in the original GPT2Config prenorm=True, parallel_block=gpt_neox_config.use_parallel_residual, parallel_block_tied_norm=False, rotary_emb_fraction=gpt_neox_config.rotary_pct, tie_word_embeddings=gpt_neox_config.tie_word_embeddings, )