# Copyright (c) 2023, GGGGGGXY, Tri Dao. import math import json import re from pathlib import Path from collections import OrderedDict import torch import torch.nn.functional as F from einops import rearrange from transformers import GPT2Config, AutoConfig, PretrainedConfig def remap_state_dict_hf_baichuan(state_dict, config): def key_mapping_layers(key): return re.sub(r"^model.", "transformer.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # Word embedding def key_mapping_emb(key): return re.sub( r"^transformer.embed_tokens.", "transformer.embeddings.word_embeddings.", key, ) state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) vocab_size = ( math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple ) state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) if getattr(config, "tie_word_embeddings"): state_dict["lm_head.weight"] = state_dict[ "transformer.embeddings.word_embeddings.weight" ] else: output_embeddings = state_dict.pop("lm_head.weight") # Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings # differently. vocab_size = ( math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple ) # It's possible that vocab_size is padded to be a multiple of 8, for example. state_dict["lm_head.weight"] = F.pad( output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0]) ) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key) key = re.sub( r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key, ) key = re.sub( r"^transformer.layers.(\d+).post_attention_layernorm.", r"transformer.layers.\1.norm2.", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP for l in range(config.n_layer): w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight") w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight") # Our ordering is different state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat( [w3, w1], dim=0 ) def key_mapping_mlp(key): return re.sub( r"^transformer.layers.(\d+).mlp.down_proj.", r"transformer.layers.\1.mlp.fc2.", key, ) state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention def key_mapping_attn(key): key = re.sub( r"^transformer.layers.(\d+).self_attn.W_pack.", r"transformer.layers.\1.mixer.Wqkv.", key, ) key = re.sub( r"^transformer.layers.(\d+).self_attn.o_proj.", r"transformer.layers.\1.mixer.out_proj.", key, ) return key state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) for l in range(config.n_layer): # pop rotary_emb.inv_freq from state dict state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq", None) return state_dict def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config: # HACK: the config doesn't have say whether it's rotary or alibi. # So we have to infer from the hidden size (7B -> rotary, 13B -> alibi). # HACK: the config doesn't have say whether it uses norm head. # So we have to infer from the vocab size # (v1, vocab size 64k, no norm head; v2, vocab size 128k, norm head). use_rotary = baichuan_config.hidden_size < 5000 return GPT2Config( vocab_size=baichuan_config.vocab_size, n_positions=0, # No absolute position embedding n_embd=baichuan_config.hidden_size, n_layer=baichuan_config.num_hidden_layers, n_head=baichuan_config.num_attention_heads, n_inner=baichuan_config.intermediate_size, activation_function="swiglu", # Hardcode since HF calls it 'silu' # baichuan doesn't have dropout, idk if it's because they only release the inference code resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=baichuan_config.rms_norm_eps, initializer_range=baichuan_config.initializer_range, bos_token_id=baichuan_config.bos_token_id, eos_token_id=baichuan_config.eos_token_id, # These are new arguments not in the original GPT2Config pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything rms_norm=True, rotary_emb_fraction=1.0 if use_rotary else 0.0, rotary_emb_interleaved=False, use_alibi=not use_rotary, use_flash_attn=not use_rotary, # Alibi code path requires flash_attn tie_word_embeddings=False, norm_head=baichuan_config.vocab_size > 70000, qkv_proj_bias=False, out_proj_bias=False, mlp_fc1_bias=False, mlp_fc2_bias=False, )