/****************************************************************************** * Copyright (c) 2024, Tri Dao. ******************************************************************************/ // Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers. #include #include #include #include #include #include "flash.h" #include "static_switch.h" #define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA") #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") void set_params_fprop(Flash_fwd_params ¶ms, // sizes const size_t b, const size_t seqlen_q, const size_t seqlen_k, const size_t seqlen_q_rounded, const size_t seqlen_k_rounded, const size_t h, const size_t h_k, const size_t d, const size_t d_rounded, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, at::Tensor out, void *cu_seqlens_q_d, void *cu_seqlens_k_d, void *seqused_k, void *p_d, void *softmax_lse_d, float p_dropout, float softmax_scale, int window_size_left, int window_size_right, const float softcap, bool seqlenq_ngroups_swapped=false, const bool unpadded_lse=false) { // Reset the parameters params = {}; params.is_bf16 = q.dtype() == torch::kBFloat16; // Set the pointers and strides. params.q_ptr = q.data_ptr(); params.k_ptr = k.data_ptr(); params.v_ptr = v.data_ptr(); // All stride are in elements, not bytes. params.q_row_stride = q.stride(-3); params.k_row_stride = k.stride(-3); params.v_row_stride = v.stride(-3); params.q_head_stride = q.stride(-2); params.k_head_stride = k.stride(-2); params.v_head_stride = v.stride(-2); params.o_ptr = out.data_ptr(); params.o_row_stride = out.stride(-3); params.o_head_stride = out.stride(-2); if (cu_seqlens_q_d == nullptr) { params.q_batch_stride = q.stride(0); params.k_batch_stride = k.stride(0); params.v_batch_stride = v.stride(0); params.o_batch_stride = out.stride(0); if (seqlenq_ngroups_swapped) { params.q_batch_stride *= seqlen_q; params.o_batch_stride *= seqlen_q; } } params.cu_seqlens_q = static_cast(cu_seqlens_q_d); params.cu_seqlens_k = static_cast(cu_seqlens_k_d); params.seqused_k = static_cast(seqused_k); // P = softmax(QK^T) params.p_ptr = p_d; // Softmax sum params.softmax_lse_ptr = softmax_lse_d; // Set the dimensions. params.b = b; params.h = h; params.h_k = h_k; params.h_h_k_ratio = h / h_k; params.seqlen_q = seqlen_q; params.seqlen_k = seqlen_k; params.seqlen_q_rounded = seqlen_q_rounded; params.seqlen_k_rounded = seqlen_k_rounded; params.d = d; params.d_rounded = d_rounded; // Set the different scale values. #ifdef FLASHATTENTION_DISABLE_SOFTCAP TORCH_CHECK(softcap <= 0.0, "This flash attention build does not support softcap."); #endif if (softcap > 0.0) { params.softcap = softmax_scale / softcap; params.scale_softmax = softcap; params.scale_softmax_log2 = softcap * M_LOG2E; } else{ // Remove potential NaN params.softcap = 0.0; params.scale_softmax = softmax_scale; params.scale_softmax_log2 = softmax_scale * M_LOG2E; } // Set this to probability of keeping an element to simplify things. params.p_dropout = 1.f - p_dropout; // Convert p from float to int so we don't have to convert the random uint to float to compare. // [Minor] We want to round down since when we do the comparison we use <= instead of < // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0)); // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0)); params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0)); params.rp_dropout = 1.f / params.p_dropout; params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax; TORCH_CHECK(p_dropout < 1.f); #ifdef FLASHATTENTION_DISABLE_DROPOUT TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout."); #endif // Causal is the special case where window_size_right == 0 and window_size_left < 0. // Local is the more general case where window_size_right >= 0 or window_size_left >= 0. params.is_causal = window_size_left < 0 && window_size_right == 0; if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; } if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; } params.window_size_left = window_size_left; params.window_size_right = window_size_right; #ifdef FLASHATTENTION_DISABLE_LOCAL TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0), "This flash attention build does not support local attention."); #endif params.is_seqlens_k_cumulative = true; #ifdef FLASHATTENTION_DISABLE_UNEVEN_K TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32."); #endif params.unpadded_lse = unpadded_lse; params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped; } void set_params_dgrad(Flash_bwd_params ¶ms, // sizes const size_t b, const size_t seqlen_q, const size_t seqlen_k, const size_t seqlen_q_rounded, const size_t seqlen_k_rounded, const size_t h, const size_t h_k, const size_t d, const size_t d_rounded, // device pointers const at::Tensor q, const at::Tensor k, const at::Tensor v, const at::Tensor out, const at::Tensor dout, at::Tensor dq, at::Tensor dk, at::Tensor dv, void *cu_seqlens_q_d, void *cu_seqlens_k_d, void *dq_accum_d, void *dk_accum_d, void *dv_accum_d, void *softmax_lse_d, void *dsoftmax_sum_d, float p_dropout, float softmax_scale, int window_size_left, int window_size_right, const float softcap, bool deterministic, const bool unpadded_lse) { set_params_fprop(params, b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded, q, k, v, out, cu_seqlens_q_d, cu_seqlens_k_d, nullptr, nullptr, softmax_lse_d, p_dropout, softmax_scale, window_size_left, window_size_right, softcap, false, // seqlenq_ngroups_swapped unpadded_lse); // Set the pointers and strides. params.do_ptr = dout.data_ptr(); params.do_row_stride = dout.stride(-3); params.do_head_stride = dout.stride(-2); params.dq_ptr = dq.data_ptr(); params.dk_ptr = dk.data_ptr(); params.dv_ptr = dv.data_ptr(); params.dq_row_stride = dq.stride(-3); params.dk_row_stride = dk.stride(-3); params.dv_row_stride = dv.stride(-3); params.dq_head_stride = dq.stride(-2); params.dk_head_stride = dk.stride(-2); params.dv_head_stride = dv.stride(-2); if (cu_seqlens_q_d == nullptr) { params.do_batch_stride = dout.stride(0); params.dq_batch_stride = dq.stride(0); params.dk_batch_stride = dk.stride(0); params.dv_batch_stride = dv.stride(0); } params.dq_accum_ptr = dq_accum_d; params.dk_accum_ptr = dk_accum_d; params.dv_accum_ptr = dv_accum_d; // Softmax sum params.dsoftmax_sum = dsoftmax_sum_d; params.deterministic = deterministic; } void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) { FP16_SWITCH(!params.is_bf16, [&] { HEADDIM_SWITCH(params.d, [&] { BOOL_SWITCH(params.is_causal, Is_causal, [&] { if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0 run_mha_fwd_(params, stream); } else { run_mha_fwd_splitkv_dispatch(params, stream); } }); }); }); } // Find the number of splits that maximizes the occupancy. For example, if we have // batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is // better than having 3 splits (efficiency = 0.67). However, we also don't want too many // splits as that would incur more HBM reads/writes. // So we find the best efficiency, then find the smallest number of splits that gets 85% // of the best efficiency. inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) { // If we have enough to almost fill the SMs, then just use 1 split if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; } max_splits = std::min({max_splits, num_SMs, num_n_blocks}); float max_efficiency = 0.f; std::vector efficiency; efficiency.reserve(max_splits); auto ceildiv = [](int a, int b) { return (a + b - 1) / b; }; // Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits, // we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks // (i.e. it's 11 splits anyway). // So we check if the number of blocks per split is the same as the previous num_splits. auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) { return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1); }; for (int num_splits = 1; num_splits <= max_splits; num_splits++) { if (!is_split_eligible(num_splits)) { efficiency.push_back(0.f); } else { float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs; float eff = n_waves / ceil(n_waves); // printf("num_splits = %d, eff = %f\n", num_splits, eff); if (eff > max_efficiency) { max_efficiency = eff; } efficiency.push_back(eff); } } for (int num_splits = 1; num_splits <= max_splits; num_splits++) { if (!is_split_eligible(num_splits)) { continue; } if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) { // printf("num_splits chosen = %d\n", num_splits); return num_splits; } } return 1; } std::tuple set_params_splitkv(Flash_fwd_params ¶ms, const int batch_size, const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q, const int head_size_rounded, const float p_dropout, const int num_splits, cudaDeviceProp *dprops, struct c10::TensorOptions opts) { // This needs to match with run_mha_fwd_splitkv_dispatch const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64); const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n; // Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel. // In any case we don't expect seqlen_q to be larger than 64 for inference. const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64; params.num_splits = num_splits; at::Tensor softmax_lse_accum; at::Tensor out_accum; if (p_dropout == 0.0f) { // SplitKV is not implemented for dropout if (num_splits < 1) { // We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block. params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount * 2, num_n_blocks, 128); } if (params.num_splits > 1) { softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat)); out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat)); params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr(); params.oaccum_ptr = out_accum.data_ptr(); } TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported"); } return std::make_tuple(softmax_lse_accum, out_accum); } void set_params_alibi(Flash_fwd_params ¶ms, c10::optional &alibi_slopes_, int batch_size, int num_heads){ #ifdef FLASHATTENTION_DISABLE_ALIBI TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi."); params.alibi_slopes_ptr = nullptr; #else if (alibi_slopes_.has_value()) { auto alibi_slopes = alibi_slopes_.value(); TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32"); CHECK_DEVICE(alibi_slopes); TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension"); TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads})); params.alibi_slopes_ptr = alibi_slopes.data_ptr(); params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0; } else { params.alibi_slopes_ptr = nullptr; } #endif } std::vector mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8) const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8) const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x round_multiple(head_size, 8) c10::optional &out_, // batch_size x seqlen_q x num_heads x round_multiple(head_size, 8) c10::optional &alibi_slopes_, // num_heads or batch_size x num_heads const float p_dropout, const float softmax_scale, bool is_causal, int window_size_left, int window_size_right, const float softcap, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; int seqlen_q = sizes[1]; int num_heads = sizes[2]; const int head_size = sizes[3]; const int seqlen_k = k.size(1); const int num_heads_k = k.size(2); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } if (window_size_left >= seqlen_k) { window_size_left = -1; } if (window_size_right >= seqlen_k) { window_size_right = -1; } // causal=true is the same as causal=false in this case if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } if (is_causal) { window_size_right = 0; } // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case // H/t Daniel Haziza const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value(); const int ngroups = num_heads / num_heads_k; if (seqlenq_ngroups_swapped) { q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2); seqlen_q = ngroups; num_heads = num_heads_k; } CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size); if (seqlenq_ngroups_swapped) { out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2); } } else { out = torch::empty_like(q); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); at::Tensor p; // Only return softmax if there's dropout to reduce compilation time if (return_softmax) { TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); } else { p = torch::empty({ 0 }, opts); } Flash_fwd_params params; set_params_fprop(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, /*cu_seqlens_q_d=*/nullptr, /*cu_seqlens_k_d=*/nullptr, /*seqused_k=*/nullptr, return_softmax ? p.data_ptr() : nullptr, softmax_lse.data_ptr(), p_dropout, softmax_scale, window_size_left, window_size_right, softcap ); // Keep references to these tensors to extend their lifetime at::Tensor softmax_lse_accum, out_accum; std::tie(softmax_lse_accum, out_accum) = set_params_splitkv( params, batch_size, num_heads, head_size, seqlen_k, seqlen_q, head_size_rounded, p_dropout, /*num_splits*/ 0, dprops, opts); // number of times random will be generated per thread, to offset philox counter in thc random // state // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); // Forward kernel will populate memory with the seed and offset. params.rng_state = reinterpret_cast(rng_state.data_ptr()); if (p_dropout > 0.0) { auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } set_params_alibi(params, alibi_slopes_, batch_size, num_heads); if (seqlen_k > 0) { auto stream = at::cuda::getCurrentCUDAStream().stream(); run_mha_fwd(params, stream); } else { // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0. out.zero_(); softmax_lse.fill_(std::numeric_limits::infinity()); } if (seqlenq_ngroups_swapped) { out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size}); q = q.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size}); softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1}); } return {out, softmax_lse, p, rng_state}; } std::vector mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. c10::optional &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens_q, // b+1 const at::Tensor &cu_seqlens_k, // b+1 c10::optional &seqused_k, // b. If given, only this many elements of each batch element's keys are used. c10::optional &leftpad_k_, // batch_size c10::optional &block_table_, // batch_size x max_num_blocks_per_seq c10::optional &alibi_slopes_, // num_heads or b x num_heads int max_seqlen_q, const int max_seqlen_k, const float p_dropout, const float softmax_scale, const bool zero_tensors, bool is_causal, int window_size_left, int window_size_right, const float softcap, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); at::Tensor block_table; const bool paged_KV = block_table_.has_value(); if (paged_KV) { block_table = block_table_.value(); CHECK_DEVICE(block_table); TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32"); TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension"); } TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); CHECK_CONTIGUOUS(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_k); const auto sizes = q.sizes(); const int batch_size = cu_seqlens_q.numel() - 1; int num_heads = sizes[1]; const int head_size = sizes[2]; const int num_heads_k = paged_KV ? k.size(2) : k.size(1); if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1); const int num_blocks = !paged_KV ? 0 : k.size(0); const int page_block_size = !paged_KV ? 1 : k.size(1); TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256"); if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } // causal=true is the same as causal=false in this case if (is_causal) { window_size_right = 0; } void *cu_seqlens_q_d = cu_seqlens_q.data_ptr(); // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case // H/t Daniel Haziza const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size % 8 == 0 && !alibi_slopes_.has_value(); const int ngroups = num_heads / num_heads_k; if (seqlenq_ngroups_swapped) { q = q.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size}); max_seqlen_q = ngroups; num_heads = num_heads_k; cu_seqlens_q_d = nullptr; } const int total_q = q.sizes()[0]; TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(head_size % 8 == 0, "query, key, value, and out_ must have a head_size that is a multiple of 8"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (window_size_left >= max_seqlen_k) { window_size_left = -1; } if (window_size_right >= max_seqlen_k) { window_size_right = -1; } CHECK_SHAPE(q, total_q, num_heads, head_size); if (!paged_KV) { const int total_k = k.size(0); CHECK_SHAPE(k, total_k, num_heads_k, head_size); CHECK_SHAPE(v, total_k, num_heads_k, head_size); } else { CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size); CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size); CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq); } CHECK_SHAPE(cu_seqlens_q, batch_size + 1); CHECK_SHAPE(cu_seqlens_k, batch_size + 1); if (seqused_k.has_value()){ auto seqused_k_ = seqused_k.value(); TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32"); TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device"); TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous"); CHECK_SHAPE(seqused_k_, batch_size); } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, sizes[0], sizes[1], head_size); if (seqlenq_ngroups_swapped) { out = out.reshape({batch_size, num_heads_k, ngroups, head_size}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size}); } } else { out = torch::empty_like(q); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat)); at::Tensor p; // Only return softmax if there's dropout to reduce compilation time if (return_softmax) { TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0"); p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts); } else { p = torch::empty({ 0 }, opts); } if (zero_tensors) { out.zero_(); softmax_lse.fill_(-std::numeric_limits::infinity()); if (return_softmax) {p.zero_();} } Flash_fwd_params params; set_params_fprop(params, batch_size, max_seqlen_q, max_seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, cu_seqlens_q_d, cu_seqlens_k.data_ptr(), seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr, return_softmax ? p.data_ptr() : nullptr, softmax_lse.data_ptr(), p_dropout, softmax_scale, window_size_left, window_size_right, softcap, seqlenq_ngroups_swapped, /*unpadded_lse*/true); params.total_q = total_q; if (paged_KV) { params.block_table = block_table.data_ptr(); params.block_table_batch_stride = block_table.stride(0); params.k_batch_stride = k.stride(0); params.v_batch_stride = v.stride(0); } params.page_block_size = page_block_size; // Keep references to these tensors to extend their lifetime at::Tensor softmax_lse_accum, out_accum; if (seqlenq_ngroups_swapped) { // Only apply split-k for decoding std::tie(softmax_lse_accum, out_accum) = set_params_splitkv(params, batch_size, num_heads, head_size, max_seqlen_k, max_seqlen_q, head_size_rounded, p_dropout, /*num_splits*/ 0, dprops, opts); } if (leftpad_k_.has_value()) { auto leftpad_k = leftpad_k_.value(); TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet"); TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32"); CHECK_DEVICE(leftpad_k); CHECK_CONTIGUOUS(leftpad_k); CHECK_SHAPE(leftpad_k, batch_size); params.leftpad_k = static_cast(leftpad_k.data_ptr()); } // number of times random will be generated per thread, to offset philox counter in thc random // state // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); auto rng_state = torch::empty({2}, options.dtype(torch::kInt64)); // Forward kernel will populate memory with the seed and offset. params.rng_state = reinterpret_cast(rng_state.data_ptr()); if (p_dropout > 0.0) { auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } set_params_alibi(params, alibi_slopes_, batch_size, num_heads); if (max_seqlen_k > 0) { auto stream = at::cuda::getCurrentCUDAStream().stream(); run_mha_fwd(params, stream, paged_KV); } else { // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0. out.zero_(); softmax_lse.fill_(std::numeric_limits::infinity()); } if (seqlenq_ngroups_swapped) { int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size}; int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size}; out = out.reshape(size_before).transpose(1, 2).reshape(size_after); q = q.reshape(size_before).transpose(1, 2).reshape(size_after); softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size}); } return {out, softmax_lse, p, rng_state}; } void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) { FP16_SWITCH(!params.is_bf16, [&] { HEADDIM_SWITCH(params.d, [&] { BOOL_SWITCH(params.is_causal, Is_causal, [&] { run_mha_bwd_(params, stream); }); }); }); } std::vector mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8) const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &softmax_lse, // b x h x seqlen_q c10::optional &dq_, // batch_size x seqlen_q x num_heads x head_size c10::optional &dk_, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &dv_, // batch_size x seqlen_k x num_heads_k x head_size c10::optional &alibi_slopes_, // num_heads or batch_size x num_heads const float p_dropout, // probability to drop const float softmax_scale, const bool is_causal, int window_size_left, int window_size_right, const float softcap, const bool deterministic, c10::optional gen_, c10::optional &rng_state) { #ifdef FLASHATTENTION_DISABLE_BACKWARD TORCH_CHECK(false, "This flash attention build does not support backward."); #endif if (is_causal) { window_size_right = 0; } auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm80 = dprops->major == 8 && dprops->minor == 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); const auto sizes = q.sizes(); const int batch_size = sizes[0]; const int seqlen_q = sizes[1]; const int num_heads = sizes[2]; const int head_size = sizes[3]; const int seqlen_k = k.size(1); const int num_heads_k = k.size(2); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); if (head_size > 192 && is_dropout) { TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 with dropout requires A100/A800 or H100/H800"); } TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } if (window_size_left >= seqlen_k) { window_size_left = -1; } if (window_size_right >= seqlen_k) { window_size_right = -1; } CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size); CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size); at::Tensor dq, dk, dv; if (dq_.has_value()) { dq = dq_.value(); TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); CHECK_DEVICE(dq); TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size); } else { dq = torch::empty_like(q); } if (dk_.has_value()) { dk = dk_.value(); TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); CHECK_DEVICE(dk); TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size); } else { dk = torch::empty_like(k); } if (dv_.has_value()) { dv = dv_.value(); TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); CHECK_DEVICE(dv); TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size); } else { dv = torch::empty_like(v); } // bool loop = seqlen_k > blocksize_c; // TODO: change later, for now set to true for simplicity bool loop = true; // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat)); at::Tensor dq_accum; at::Tensor dk_accum, dv_accum; if (loop) { if (!deterministic) { dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); } else { const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads); dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); } // dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat)); // dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat)); } at::Tensor dk_expanded, dv_expanded; if (num_heads_k != num_heads) { // MQA / GQA dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts); } else { dk_expanded = dk; dv_expanded = dv; } Flash_bwd_params params; set_params_dgrad(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, dout, dq, dk_expanded, dv_expanded, nullptr, nullptr, loop ? dq_accum.data_ptr() : nullptr, // loop ? dk_accum.data_ptr() : nullptr, // loop ? dv_accum.data_ptr() : nullptr, nullptr, nullptr, softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, window_size_left, window_size_right, softcap, deterministic, /*unpadded_lse*/false); params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0); auto launch = &run_mha_bwd; auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; if ( rng_state.has_value() ) { params.rng_state = reinterpret_cast(rng_state.value().data_ptr()); } else if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); auto seeds = at::cuda::philox::unpack(params.philox_args); params.rng_state[0] = std::get<0>(seeds); params.rng_state[1] = std::get<1>(seeds); } set_params_alibi(params, alibi_slopes_, batch_size, num_heads); if (seqlen_q > 0) { launch(params, stream); } else { // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0. dk_expanded.zero_(); dv_expanded.zero_(); softmax_d.zero_(); } // For MQA/GQA we need to sum dK and dV across the groups if (num_heads_k != num_heads) { at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3}); } return { dq, dk, dv, softmax_d }; } std::vector mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &out, // total_q x num_heads x head_size const at::Tensor &softmax_lse, // h x total_q, softmax logsumexp c10::optional &dq_, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i c10::optional &dk_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i c10::optional &dv_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens_q, // b+1 const at::Tensor &cu_seqlens_k, // b+1 c10::optional &alibi_slopes_, // num_heads or b x num_heads const int max_seqlen_q, const int max_seqlen_k, // max sequence length to choose the kernel const float p_dropout, // probability to drop const float softmax_scale, const bool zero_tensors, const bool is_causal, int window_size_left, int window_size_right, const float softcap, const bool deterministic, c10::optional gen_, c10::optional &rng_state) { #ifdef FLASHATTENTION_DISABLE_BACKWARD TORCH_CHECK(false, "This flash attention build does not support backward."); #endif if (is_causal) { window_size_right = 0; } auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm80 = dprops->major == 8 && dprops->minor == 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype"); TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype"); TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype"); TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32"); TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32"); CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse); CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension"); TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension"); CHECK_CONTIGUOUS(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_k); const auto sizes = q.sizes(); const int total_q = sizes[0]; const int batch_size = cu_seqlens_q.numel() - 1; const int num_heads = sizes[1]; const int head_size = sizes[2]; const int total_k = k.size(0); const int num_heads_k = k.size(1); TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8"); TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256"); if (head_size > 192 && is_dropout) { TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim > 192 with dropout requires A100/A800 or H100/H800"); } TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128); const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128); if (window_size_left >= max_seqlen_k) { window_size_left = -1; } if (window_size_right >= max_seqlen_k) { window_size_right = -1; } CHECK_SHAPE(q, total_q, num_heads, head_size); CHECK_SHAPE(k, total_k, num_heads_k, head_size); CHECK_SHAPE(v, total_k, num_heads_k, head_size); CHECK_SHAPE(out, total_q, num_heads, head_size); CHECK_SHAPE(dout, total_q, num_heads, head_size); CHECK_SHAPE(cu_seqlens_q, batch_size + 1); CHECK_SHAPE(cu_seqlens_k, batch_size + 1); at::Tensor dq, dk, dv; if (dq_.has_value()) { dq = dq_.value(); TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q"); CHECK_DEVICE(dq); TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension"); CHECK_SHAPE(dq, total_q, num_heads, head_size); } else { dq = torch::empty_like(q); } if (dk_.has_value()) { dk = dk_.value(); TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q"); CHECK_DEVICE(dk); TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension"); CHECK_SHAPE(dk, total_k, num_heads_k, head_size); } else { dk = torch::empty_like(k); } if (dv_.has_value()) { dv = dv_.value(); TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q"); CHECK_DEVICE(dv); TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension"); CHECK_SHAPE(dv, total_k, num_heads_k, head_size); } else { dv = torch::empty_like(v); } // bool loop = max_seqlen_k > blocksize_c; // TODO: change later, for now set to true for simplicity bool loop = true; // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_d = torch::empty({num_heads, total_q + 128 * batch_size}, opts.dtype(at::kFloat)); at::Tensor dq_accum; if (loop) { // We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded) // because that would be too large if there is a very long sequence and the rest of the sequences are short. // Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded). // Note that 128 is the max block size on the seqlen_q dimension. // For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to // cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will // be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally // allowed to do. So we won't have to do any bound checking, and performance should stay the same. // Same holds for softmax_d, since LSE is stored in unpadded format. if (!deterministic) { dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); } else { const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads); dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat)); } } at::Tensor dk_expanded, dv_expanded; if (num_heads_k != num_heads) { // MQA / GQA dk_expanded = torch::empty({total_k, num_heads, head_size}, opts); dv_expanded = torch::empty({total_k, num_heads, head_size}, opts); } else { dk_expanded = dk; dv_expanded = dv; } if( zero_tensors ) { dq.zero_(); dk_expanded.zero_(); dv_expanded.zero_(); softmax_d.zero_(); } Flash_bwd_params params; set_params_dgrad(params, batch_size, max_seqlen_q, max_seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q, k, v, out, dout, dq, dk_expanded, dv_expanded, cu_seqlens_q.data_ptr(), cu_seqlens_k.data_ptr(), loop ? dq_accum.data_ptr() : nullptr, nullptr, nullptr, softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, window_size_left, window_size_right, softcap, deterministic, /*unpadded_lse*/true); params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0); params.total_q = total_q; auto launch = &run_mha_bwd; auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We use a custom RNG that increases the offset by batch_size * nheads * 32. int64_t counter_offset = params.b * params.h * 32; if ( rng_state.has_value() ) { params.rng_state = reinterpret_cast(rng_state.value().data_ptr()); } else if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); auto seeds = at::cuda::philox::unpack(params.philox_args); params.rng_state[0] = std::get<0>(seeds); params.rng_state[1] = std::get<1>(seeds); } set_params_alibi(params, alibi_slopes_, batch_size, num_heads); if (max_seqlen_q > 0) { launch(params, stream); } else { // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0. dk_expanded.zero_(); dv_expanded.zero_(); softmax_d.zero_(); } // For MQA/GQA we need to sum dK and dV across the groups if (num_heads_k != num_heads) { at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2}); } return { dq, dk, dv, softmax_d }; } std::vector mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size const at::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. const at::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table. c10::optional &k_, // batch_size x seqlen_knew x num_heads_k x head_size c10::optional &v_, // batch_size x seqlen_knew x num_heads_k x head_size c10::optional &seqlens_k_, // batch_size c10::optional &rotary_cos_, // seqlen_ro x (rotary_dim / 2) c10::optional &rotary_sin_, // seqlen_ro x (rotary_dim / 2) c10::optional &cache_batch_idx_, // indices to index into the KV cache c10::optional &leftpad_k_, // batch_size c10::optional &block_table_, // batch_size x max_num_blocks_per_seq c10::optional &alibi_slopes_, // num_heads or batch_size x num_heads c10::optional &out_, // batch_size x seqlen_q x num_heads x head_size const float softmax_scale, bool is_causal, int window_size_left, int window_size_right, const float softcap, bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2 int num_splits ) { auto dprops = at::cuda::getCurrentDeviceProperties(); // bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm8x = dprops->major == 8 && dprops->minor >= 0; bool is_sm90 = dprops->major == 9 && dprops->minor == 0; TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer."); // We will support Turing in the near future // TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer."); auto q_dtype = q.dtype(); TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16, "FlashAttention only support fp16 and bf16 data type"); if (q_dtype == torch::kBFloat16) { TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer"); } TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype"); TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype"); CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache); TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension"); at::Tensor block_table; const bool paged_KV = block_table_.has_value(); if (paged_KV) { TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx"); block_table = block_table_.value(); CHECK_DEVICE(block_table); TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32"); TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension"); } const auto sizes = q.sizes(); const int batch_size = sizes[0]; int seqlen_q = sizes[1]; int num_heads = sizes[2]; const int head_size_og = sizes[3]; const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1); const int num_blocks = !paged_KV ? 0 : kcache.size(0); const int page_block_size = !paged_KV ? 1 : kcache.size(1); TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256"); const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size; const int num_heads_k = kcache.size(2); const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size; TORCH_CHECK(batch_size > 0, "batch size must be positive"); TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256"); TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query"); // causal=true is the same as causal=false in this case if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } if (is_causal) { window_size_right = 0; } // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case // H/t Daniel Haziza const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value(); if (seqlenq_ngroups_swapped) { const int ngroups = num_heads / num_heads_k; q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2); seqlen_q = ngroups; num_heads = num_heads_k; } if (window_size_left >= seqlen_k) { window_size_left = -1; } if (window_size_right >= seqlen_k) { window_size_right = -1; } CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og); if (!paged_KV) { CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og); CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og); } else { CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og); CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og); CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq); } at::Tensor q_padded, kcache_padded, vcache_padded; if (head_size_og % 8 != 0) { q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { q_padded = q; kcache_padded = kcache; vcache_padded = vcache; } at::Tensor out; if (out_.has_value()) { out = out_.value(); TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs"); CHECK_DEVICE(out); TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension"); CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og); if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); } } else { out = torch::empty_like(q_padded); } auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; }; const int head_size = round_multiple(head_size_og, 8); const int head_size_rounded = head_size <= 192 ? round_multiple(head_size, 32) : 256; const int seqlen_q_rounded = round_multiple(seqlen_q, 128); const int seqlen_k_rounded = round_multiple(seqlen_k, 128); // Otherwise the kernel will be launched from cuda:0 device // Cast to char to avoid compiler warning about narrowing at::cuda::CUDAGuard device_guard{(char)q.get_device()}; auto opts = q.options(); auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat)); Flash_fwd_params params; set_params_fprop(params, batch_size, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, num_heads, num_heads_k, head_size, head_size_rounded, q_padded, kcache_padded, vcache_padded, out, /*cu_seqlens_q_d=*/nullptr, /*cu_seqlens_k_d=*/nullptr, /*seqused_k=*/nullptr, /*p_ptr=*/nullptr, softmax_lse.data_ptr(), /*p_dropout=*/0.f, softmax_scale, window_size_left, window_size_right, softcap ); at::Tensor k, v, k_padded, v_padded; if (k_.has_value()) { TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in"); TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in"); TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache"); k = k_.value(); v = v_.value(); TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query"); TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query"); CHECK_DEVICE(k); CHECK_DEVICE(v); TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension"); TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension"); int seqlen_knew = k.size(1); CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og); CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og); if (head_size_og % 8 != 0) { k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8})); } else { k_padded = k; v_padded = v; } params.seqlen_knew = seqlen_knew; params.knew_ptr = k_padded.data_ptr(); params.vnew_ptr = v_padded.data_ptr(); // All stride are in elements, not bytes. params.knew_batch_stride = k_padded.stride(0); params.vnew_batch_stride = v_padded.stride(0); params.knew_row_stride = k_padded.stride(-3); params.vnew_row_stride = v_padded.stride(-3); params.knew_head_stride = k_padded.stride(-2); params.vnew_head_stride = v_padded.stride(-2); } if (seqlens_k_.has_value()) { auto seqlens_k = seqlens_k_.value(); TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32"); CHECK_DEVICE(seqlens_k); CHECK_CONTIGUOUS(seqlens_k); CHECK_SHAPE(seqlens_k, batch_size); params.cu_seqlens_k = static_cast(seqlens_k.data_ptr()); } params.is_seqlens_k_cumulative = !(seqlens_k_.has_value()); if (leftpad_k_.has_value()) { TORCH_CHECK(!paged_KV, "We don't support Paged KV and leftpad_k running at the same time yet"); auto leftpad_k = leftpad_k_.value(); TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32"); CHECK_DEVICE(leftpad_k); CHECK_CONTIGUOUS(leftpad_k); CHECK_SHAPE(leftpad_k, batch_size); params.leftpad_k = static_cast(leftpad_k.data_ptr()); } if (rotary_cos_.has_value()) { TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided"); auto rotary_cos = rotary_cos_.value(); CHECK_DEVICE(rotary_cos); params.rotary_dim = rotary_cos.size(1) * 2; TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim"); TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported"); const int seqlen_ro = rotary_cos.size(0); TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache"); CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2); CHECK_CONTIGUOUS(rotary_cos); TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided"); auto rotary_sin = rotary_sin_.value(); CHECK_DEVICE(rotary_sin); CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2); CHECK_CONTIGUOUS(rotary_sin); TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query"); params.rotary_cos_ptr = rotary_cos.data_ptr(); params.rotary_sin_ptr = rotary_sin.data_ptr(); params.is_rotary_interleaved = is_rotary_interleaved; } else { params.rotary_dim = 0; } if (cache_batch_idx_.has_value()) { auto cache_batch_idx = cache_batch_idx_.value(); CHECK_DEVICE(cache_batch_idx); CHECK_CONTIGUOUS(cache_batch_idx); TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32"); params.cache_batch_idx = reinterpret_cast(cache_batch_idx.data_ptr()); } // Keep references to these tensors to extend their lifetime at::Tensor softmax_lse_accum, out_accum; std::tie(softmax_lse_accum, out_accum) = set_params_splitkv( params, batch_size, num_heads, head_size, seqlen_k, seqlen_q, head_size_rounded, /*dropout*/ 0.f, num_splits, dprops, opts); if (paged_KV) { params.block_table = block_table.data_ptr(); params.block_table_batch_stride = block_table.stride(0); } params.page_block_size = page_block_size; set_params_alibi(params, alibi_slopes_, batch_size, num_heads); auto stream = at::cuda::getCurrentCUDAStream().stream(); // Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx, // or paged KV cache run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV); if (head_size_og % 8 != 0) { out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}); if (out_.has_value()) { out_.value().copy_(out); } if (k_.has_value()) { // It's expensive to copy the KV cache here for the case where head size not divisible by 8, // but we don't expect to get this case in practice. This is just so that the code works for that case. kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)})); } } if (seqlenq_ngroups_swapped) { out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og}); softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1}); } return {out, softmax_lse}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.doc() = "FlashAttention"; m.def("fwd", &mha_fwd, "Forward pass"); m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)"); m.def("bwd", &mha_bwd, "Backward pass"); m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)"); m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache"); }