# Copyright (c) 2023, Tri Dao. import math from typing import Optional, Tuple, Union import torch from einops import rearrange, repeat from flash_attn.ops.triton.rotary import apply_rotary def rotate_half(x, interleaved=False): if not interleaved: x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) else: x1, x2 = x[..., ::2], x[..., 1::2] return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2) def apply_rotary_emb_torch(x, cos, sin, interleaved=False): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2) """ ro_dim = cos.shape[-1] * 2 assert ro_dim <= x.shape[-1] cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)") return torch.cat( [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], dim=-1, ) class ApplyRotaryEmb(torch.autograd.Function): @staticmethod def forward( ctx, x, cos, sin, interleaved=False, inplace=False, seqlen_offsets: Union[int, torch.Tensor] = 0, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None, ): out = apply_rotary( x, cos, sin, seqlen_offsets=seqlen_offsets, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=interleaved, inplace=inplace, ) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved ctx.inplace = inplace ctx.max_seqlen = max_seqlen return out if not inplace else x @staticmethod def backward(ctx, do): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors else: cos, sin, cu_seqlens = ctx.saved_tensors # TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with # "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works. if not ctx.interleaved and not ctx.inplace: do = do.clone() dx = apply_rotary( do, cos, sin, seqlen_offsets=seqlen_offsets, cu_seqlens=cu_seqlens, max_seqlen=ctx.max_seqlen, interleaved=ctx.interleaved, inplace=ctx.inplace, conjugate=True, ) return dx, None, None, None, None, None, None, None def apply_rotary_emb( x, cos, sin, interleaved=False, inplace=False, seqlen_offsets: Union[int, torch.Tensor] = 0, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None, ): """ Arguments: x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None else (total_seqlen, nheads, headdim) cos, sin: (seqlen_rotary, rotary_dim / 2) interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). inplace: if True, apply rotary embedding in-place. seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount. Most commonly used in inference when we have KV cache. cu_seqlens: (batch + 1,) or None max_seqlen: int Return: out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None else (total_seqlen, nheads, headdim) rotary_dim must be <= headdim Apply rotary embedding to the first rotary_dim of x. """ return ApplyRotaryEmb.apply( x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen ) # For backward compatibility apply_rotary_emb_func = apply_rotary_emb class ApplyRotaryEmbQKV_(torch.autograd.Function): @staticmethod def forward( ctx, qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, num_heads_q: Union[int] = None, ): if cos_k is None and sin_k is None and qkv.is_contiguous(): # Call 1 kernel instead of 2 kernels # We need qkv to be contiguous so that when we reshape to combine (3, nheads) # dimensions, we get the same tensor if qkv.dim() == 5: batch, seqlen, three, nheads, headdim = qkv.shape assert three == 3 # qk = rearrange(qkv[:, :, :2], "b s t h d -> b s (t h) d") qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim) else: assert qkv.dim() == 4 assert num_heads_q is not None num_heads_k = (qkv.shape[2] - num_heads_q) // 2 assert qkv.shape[2] == num_heads_q + 2 * num_heads_k qk = qkv[:, :, :num_heads_q + num_heads_k] apply_rotary( qk, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=True ) else: cos_k = cos if cos_k is None else cos_k sin_k = sin if sin_k is None else sin_k if qkv.dim() == 5: q, k = qkv[:, :, 0], qkv[:, :, 1] else: assert qkv.dim() == 4 assert num_heads_q is not None num_heads_k = (qkv.shape[2] - num_heads_q) // 2 assert qkv.shape[2] == num_heads_q + 2 * num_heads_k q, k = qkv[:, :, :num_heads_q], qkv[:, :, num_heads_q : num_heads_q + num_heads_k] apply_rotary(q, cos, sin, seqlen_offsets, interleaved=interleaved, inplace=True) apply_rotary(k, cos_k, sin_k, seqlen_offsets, interleaved=interleaved, inplace=True) ctx.save_for_backward(cos, sin, cos_k, sin_k) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin, cos_k, sin_k) ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, cos_k, sin_k, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved ctx.num_heads_q = num_heads_q return qkv @staticmethod def backward(ctx, dqkv): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, cos_k, sin_k, seqlen_offsets = ctx.saved_tensors else: cos, sin, cos_k, sin_k = ctx.saved_tensors if cos_k is None and sin_k is None and dqkv.is_contiguous(): # Call 1 kernel instead of 2 kernels # We need dqkv to be contiguous so that when we reshape to combine (3, nheads) # dimensions, we get the same tensor if dqkv.dim() == 5: dqk = rearrange(dqkv[:, :, :2], "b s t h d -> b s (t h) d") else: assert dqkv.dim() == 4 assert ctx.num_heads_q is not None num_heads_k = (dqkv.shape[2] - ctx.num_heads_q) // 2 assert dqkv.shape[2] == ctx.num_heads_q + 2 * num_heads_k dqk = dqkv[:, :, : ctx.num_heads_q + num_heads_k] apply_rotary( dqk, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=ctx.interleaved, inplace=True, conjugate=True, ) else: cos_k = cos if cos_k is None else cos_k sin_k = sin if sin_k is None else sin_k if dqkv.dim() == 5: dq, dk = dqkv[:, :, 0], dqkv[:, :, 1] else: assert dqkv.dim() == 4 assert ctx.num_heads_q is not None num_heads_k = (dqkv.shape[2] - ctx.num_heads_q) // 2 assert dqkv.shape[2] == ctx.num_heads_q + 2 * num_heads_k dq = dqkv[:, :, : ctx.num_heads_q] dk = dqkv[:, :, ctx.num_heads_q : ctx.num_heads_q + num_heads_k] apply_rotary( dq, cos, sin, seqlen_offsets, interleaved=ctx.interleaved, inplace=True, conjugate=True, ) apply_rotary( dk, cos_k, sin_k, seqlen_offsets, interleaved=ctx.interleaved, inplace=True, conjugate=True, ) return dqkv, None, None, None, None, None, None, None def apply_rotary_emb_qkv_( qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, num_heads_q: Optional[int] = None, ): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim). If qkv has shape (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA), then num_heads_q must be provided. cos, sin: (seqlen, rotary_dim / 2) cos_k, sin_k: (seqlen, rotary_dim / 2), optional interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount. Most commonly used in inference when we have KV cache. Return: qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of Q and K. """ return ApplyRotaryEmbQKV_.apply( qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, num_heads_q ) class ApplyRotaryEmbKV_(torch.autograd.Function): @staticmethod def forward(ctx, kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0): batch, seqlen, two, nheads, headdim = kv.shape assert two == 2 k = kv[:, :, 0] apply_rotary( k, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=True ) if isinstance(seqlen_offsets, int): ctx.save_for_backward(cos, sin) # Can't save int with save_for_backward ctx.seqlen_offsets = seqlen_offsets else: ctx.save_for_backward(cos, sin, seqlen_offsets) ctx.seqlen_offsets = None ctx.interleaved = interleaved return kv @staticmethod def backward(ctx, dkv): seqlen_offsets = ctx.seqlen_offsets if seqlen_offsets is None: cos, sin, seqlen_offsets = ctx.saved_tensors else: cos, sin = ctx.saved_tensors apply_rotary( dkv[:, :, 0], cos, sin, seqlen_offsets=seqlen_offsets, interleaved=ctx.interleaved, inplace=True, conjugate=True, ) return dkv, None, None, None, None apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply def apply_rotary_emb_kv_( kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0, ): """ Arguments: kv: (batch_size, seqlen, 2, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount. Most commonly used in inference when we have KV cache. Return: kv: (batch_size, seqlen, 2, nheads, headdim) rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of K. """ return ApplyRotaryEmbKV_.apply(kv, cos, sin, interleaved, seqlen_offsets) class RotaryEmbedding(torch.nn.Module): """ The rotary position embeddings from RoFormer_ (Su et. al). A crucial insight from the method is that the query and keys are transformed by rotation matrices which depend on the relative positions. Other implementations are available in the Rotary Transformer repo_ and in GPT-NeoX_, GPT-NeoX was an inspiration .. _RoFormer: https://arxiv.org/abs/2104.09864 .. _repo: https://github.com/ZhuiyiTechnology/roformer .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554). A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96 Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py """ def __init__( self, dim: int, base=10000.0, interleaved=False, scale_base=None, pos_idx_in_fp32=True, device=None, ): """ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style). pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. This option was added because previously (before 2023-07-02), when we construct the position indices, we use the dtype of self.inv_freq. In most cases this would be fp32, but if the model is trained in pure bf16 (not mixed precision), then self.inv_freq would be bf16, and the position indices are also in bf16. Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the embeddings for some positions will coincide. To maintain compatibility with models previously trained in pure bf16, we add this option. """ super().__init__() self.dim = dim self.base = float(base) self.pos_idx_in_fp32 = pos_idx_in_fp32 # Generate and save the inverse frequency buffer (non trainable) inv_freq = self._compute_inv_freq(device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.interleaved = interleaved self.scale_base = scale_base scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale, persistent=False) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _compute_inv_freq(self, device=None): return 1.0 / ( self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim) ) def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): # Reset the tables if the sequence length has changed, # if we're on a new device (possibly due to tracing for instance), # or if we're switching from inference mode to training if ( seqlen > self._seq_len_cached or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16 # And the output of arange can be quite large, so bf16 would lose a lot of precision. # However, for compatibility reason, we add an option to use the dtype of self.inv_freq. if self.pos_idx_in_fp32: t = torch.arange(seqlen, device=device, dtype=torch.float32) # We want fp32 here as well since inv_freq will be multiplied with t, and the output # will be large. Having it in bf16 will lose a lot of precision and cause the # cos & sin output to change significantly. # We want to recompute self.inv_freq if it was not loaded in fp32 if self.inv_freq.dtype != torch.float32: inv_freq = self._compute_inv_freq(device=device) else: inv_freq = self.inv_freq else: t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) inv_freq = self.inv_freq # Don't do einsum, it converts fp32 to fp16 under AMP # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 ) / self.scale_base scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") # We want the multiplication by scale to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward( self, qkv: torch.Tensor, kv: Optional[torch.Tensor] = None, seqlen_offset: Union[int, torch.Tensor] = 0, max_seqlen: Optional[int] = None, num_heads_q: Optional[int] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ qkv: (batch, seqlen, 3, nheads, headdim) or (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) if kv is none, else it's just q of shape (batch, seqlen, nheads, headdim). If qkv has shape (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA), then num_heads_q must be provided. kv: (batch, seqlen, 2, nheads, headdim) seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount. Most commonly used in inference when we have KV cache. If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one should pass in max_seqlen, which will update the cos / sin cache up to that length. Apply rotary embedding *inplace* to qkv and / or kv. """ seqlen = qkv.shape[1] if max_seqlen is not None: self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype) elif isinstance(seqlen_offset, int): self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype) if kv is None: if self.scale is None: return apply_rotary_emb_qkv_( qkv, self._cos_cached, self._sin_cached, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, num_heads_q=num_heads_q, ) else: return apply_rotary_emb_qkv_( qkv, self._cos_cached, self._sin_cached, self._cos_k_cached, self._sin_k_cached, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, num_heads_q=num_heads_q, ) else: q = qkv q = apply_rotary_emb_func( q, self._cos_cached, self._sin_cached, interleaved=self.interleaved, inplace=True, seqlen_offsets=seqlen_offset, ) if self.scale is None: kv = apply_rotary_emb_kv_( kv, self._cos_cached, self._sin_cached, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, ) else: kv = apply_rotary_emb_kv_( kv, self._cos_k_cached, self._sin_k_cached, interleaved=self.interleaved, seqlen_offsets=seqlen_offset, ) return q, kv