# This workflow will: # - Create a new Github release # - Build wheels for supported architectures # - Deploy the wheels to the Github release # - Release the static code to PyPi # For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries name: Build wheels and deploy on: create: tags: - v* jobs: setup_release: name: Create Release runs-on: ubuntu-latest steps: - name: Get the tag version id: extract_branch run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/} shell: bash - name: Create Release id: create_release uses: actions/create-release@v1 env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: tag_name: ${{ steps.extract_branch.outputs.branch }} release_name: ${{ steps.extract_branch.outputs.branch }} build_wheels: name: Build Wheel needs: setup_release runs-on: ${{ matrix.os }} strategy: fail-fast: false matrix: # Using ubuntu-20.04 instead of 22.04 for more compatibility (glibc). Ideally we'd use the # manylinux docker image, but I haven't figured out how to install CUDA on manylinux. os: [ubuntu-20.04] python-version: ['3.8', '3.9', '3.10', '3.11', '3.12'] torch-version: ['2.0.1', '2.1.2', '2.2.2', '2.3.1', '2.4.0'] cuda-version: ['11.8.0', '12.3.2'] # We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not. # Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI. # Without this we get import error (undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationESs) # when building without C++11 ABI and using it on nvcr images. cxx11_abi: ['FALSE', 'TRUE'] exclude: # see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix # Pytorch < 2.2 does not support Python 3.12 - torch-version: '2.0.1' python-version: '3.12' - torch-version: '2.1.2' python-version: '3.12' # Pytorch <= 2.0 only supports CUDA <= 11.8 - torch-version: '2.0.1' cuda-version: '12.3.2' steps: - name: Checkout uses: actions/checkout@v3 - name: Set up Python uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} - name: Set CUDA and PyTorch versions run: | echo "MATRIX_CUDA_VERSION=$(echo ${{ matrix.cuda-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV echo "MATRIX_TORCH_VERSION=$(echo ${{ matrix.torch-version }} | awk -F \. {'print $1 "." $2'})" >> $GITHUB_ENV - name: Free up disk space if: ${{ runner.os == 'Linux' }} # https://github.com/easimon/maximize-build-space/blob/master/action.yml # https://github.com/easimon/maximize-build-space/tree/test-report run: | sudo rm -rf /usr/share/dotnet sudo rm -rf /opt/ghc sudo rm -rf /opt/hostedtoolcache/CodeQL - name: Set up swap space if: runner.os == 'Linux' uses: pierotofy/set-swap-space@v1.0 with: swap-size-gb: 10 - name: Install CUDA ${{ matrix.cuda-version }} if: ${{ matrix.cuda-version != 'cpu' }} uses: Jimver/cuda-toolkit@v0.2.14 id: cuda-toolkit with: cuda: ${{ matrix.cuda-version }} linux-local-args: '["--toolkit"]' # default method is "local", and we're hitting some error with caching for CUDA 11.8 and 12.1 # method: ${{ (matrix.cuda-version == '11.8.0' || matrix.cuda-version == '12.1.0') && 'network' || 'local' }} method: 'network' # We need the cuda libraries (e.g. cuSparse, cuSolver) for compiling PyTorch extensions, # not just nvcc # sub-packages: '["nvcc"]' - name: Install PyTorch ${{ matrix.torch-version }}+cu${{ matrix.cuda-version }} run: | pip install --upgrade pip # If we don't install before installing Pytorch, we get error for torch 2.0.1 # ERROR: Could not find a version that satisfies the requirement setuptools>=40.8.0 (from versions: none) pip install lit # For some reason torch 2.2.0 on python 3.12 errors saying no setuptools pip install setuptools # We want to figure out the CUDA version to download pytorch # e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116 # see https://github.com/pytorch/pytorch/blob/main/RELEASE.md#release-compatibility-matrix # This code is ugly, maybe there's a better way to do this. export TORCH_CUDA_VERSION=$(python -c "from os import environ as env; \ minv = {'2.0': 117, '2.1': 118, '2.2': 118, '2.3': 118, '2.4': 118}[env['MATRIX_TORCH_VERSION']]; \ maxv = {'2.0': 118, '2.1': 121, '2.2': 121, '2.3': 121, '2.4': 121}[env['MATRIX_TORCH_VERSION']]; \ print(max(min(int(env['MATRIX_CUDA_VERSION']), maxv), minv))" \ ) if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION} else pip install --no-cache-dir torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/cu${TORCH_CUDA_VERSION} fi nvcc --version python --version python -c "import torch; print('PyTorch:', torch.__version__)" python -c "import torch; print('CUDA:', torch.version.cuda)" python -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)" shell: bash - name: Build wheel run: | # We want setuptools >= 49.6.0 otherwise we can't compile the extension if system CUDA version is 11.7 and pytorch cuda version is 11.6 # https://github.com/pytorch/pytorch/blob/664058fa83f1d8eede5d66418abff6e20bd76ca8/torch/utils/cpp_extension.py#L810 # However this still fails so I'm using a newer version of setuptools pip install setuptools==68.0.0 pip install ninja packaging wheel export PATH=/usr/local/nvidia/bin:/usr/local/nvidia/lib64:$PATH export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH # Limit MAX_JOBS otherwise the github runner goes OOM # CUDA 11.8 can compile with 2 jobs, but CUDA 12.3 goes OOM MAX_JOBS=$([ "$MATRIX_CUDA_VERSION" == "123" ] && echo 1 || echo 2) FLASH_ATTENTION_FORCE_BUILD="TRUE" FLASH_ATTENTION_FORCE_CXX11_ABI=${{ matrix.cxx11_abi}} python setup.py bdist_wheel --dist-dir=dist tmpname=cu${MATRIX_CUDA_VERSION}torch${MATRIX_TORCH_VERSION}cxx11abi${{ matrix.cxx11_abi }} wheel_name=$(ls dist/*whl | xargs -n 1 basename | sed "s/-/+$tmpname-/2") ls dist/*whl |xargs -I {} mv {} dist/${wheel_name} echo "wheel_name=${wheel_name}" >> $GITHUB_ENV - name: Log Built Wheels run: | ls dist - name: Get the tag version id: extract_branch run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/} - name: Get Release with tag id: get_current_release uses: joutvhu/get-release@v1 with: tag_name: ${{ steps.extract_branch.outputs.branch }} env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - name: Upload Release Asset id: upload_release_asset uses: actions/upload-release-asset@v1 env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: upload_url: ${{ steps.get_current_release.outputs.upload_url }} asset_path: ./dist/${{env.wheel_name}} asset_name: ${{env.wheel_name}} asset_content_type: application/* publish_package: name: Publish package needs: [build_wheels] runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: python-version: '3.10' - name: Install dependencies run: | pip install ninja packaging setuptools wheel twine # We don't want to download anything CUDA-related here pip install torch --index-url https://download.pytorch.org/whl/cpu - name: Build core package env: FLASH_ATTENTION_SKIP_CUDA_BUILD: "TRUE" run: | python setup.py sdist --dist-dir=dist - name: Deploy env: TWINE_USERNAME: "__token__" TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }} run: | python -m twine upload dist/*