import re import time import pytest import torch from einops import rearrange from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt from flash_attn.utils.generation import update_graph_cache from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import AutoTokenizer, OPTConfig from transformers.models.opt.modeling_opt import OPTForCausalLM @pytest.mark.parametrize( "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"] ) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_state_dict(model_name): config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize( "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"] ) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_optimized(model_name): """Check that our implementation of OPT (without all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = "cuda" config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, "prenorm", True) config.pad_vocab_size_multiple = 8 model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" ) if model_name != "facebook/opt-350m": # The OPT-350m projects the embeddings to dimension 512 out = model.transformer(input_ids) out_hf = model_hf.model(input_ids).last_hidden_state out_ref = model_ref.model(input_ids).last_hidden_state print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item() @pytest.mark.parametrize( "model_name", [ "facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b", ], ) # @pytest.mark.parametrize('model_name', ["facebook/opt-125m"]) def test_opt_generation(model_name): """Check that our implementation of OPT generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ print(f"\nMODEL: {model_name}") verbose = False dtype = torch.float16 device = "cuda" rtol, atol = 3e-3, 3e-1 config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, "prenorm", True) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model.eval() torch.manual_seed(0) # OPT tokenizer requires use_fast=False # https://huggingface.co/docs/transformers/model_doc/opt tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) eos_token_id = tokenizer.eos_token_id input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to( device=device ) max_length = 25 # input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') # max_length = input_ids.shape[1] + 40 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) if eos_token_id is not None and (sequences[-1] == eos_token_id).all(): break sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) print("Without CUDA graph") torch.cuda.synchronize() start = time.time() out = model.generate( input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, return_dict_in_generate=True, output_scores=True, enable_timing=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") if verbose: print(out.sequences) print(tokenizer.batch_decode(out.sequences.tolist())) if getattr(config, "use_flash_attn", False): # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print("With CUDA graph") torch.cuda.synchronize() start = time.time() out_cg = model.generate( input_ids=input_ids, max_length=max_length, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") if verbose: print(out_cg.sequences) print(tokenizer.batch_decode(out_cg.sequences.tolist())) del model model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_hf model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_ref.eval() print("HF fp32") torch.cuda.synchronize() start = time.time() out_ref = model_ref.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_ref print(tokenizer.batch_decode(out_ref.sequences.tolist())) if verbose: print( f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) print( f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" ) print( f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" ) assert torch.all(out.sequences == sequences) assert torch.allclose( torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol ) assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * ( torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1) ).abs().max().item()