# Copyright (c) 2023, Tri Dao. import time import pytest import torch from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gpt_neox import gpt_neox_config_to_gpt2_config, remap_state_dict_hf_gpt_neox from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import AutoTokenizer, GPTNeoXConfig from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM @pytest.mark.parametrize("model_name", ["EleutherAI/gpt-neox-20b"]) def test_gptj_state_dict(model_name): config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name)) pretrained_state_dict = remap_state_dict_hf_gpt_neox( state_dict_from_pretrained(model_name), config ) model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize( "model_name", [ "EleutherAI/pythia-1b", "EleutherAI/pythia-2.8b", "EleutherAI/gpt-neox-20b", "togethercomputer/RedPajama-INCITE-7B-Base", ], ) def test_gpt_neox_optimized(model_name): """Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = "cuda" config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = config.activation_function in [ "gelu_fast", "gelu_new", "gelu_approx", "gelu_pytorch_tanh", ] config.fused_dropout_add_ln = True config.residual_in_fp32 = True model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device ) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Need at least 2 GPUs, otherwise we'll OOM for the 20B model # Without device_map, the model is loaded on the CPU, which is very slow model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map="auto") model_ref.eval() with torch.no_grad(): out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = GPTNeoXForCausalLM.from_pretrained( model_name, torch_dtype=dtype, device_map={"": device} ) model_hf.eval() with torch.no_grad(): out_hf = model_hf.gpt_neox(input_ids).last_hidden_state logits_hf = model_hf(input_ids).logits del model_hf print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item() assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item() print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 2 * ( logits_hf - logits_ref ).abs().max().item() assert (logits - logits_ref).abs().mean().item() < 2 * ( logits_hf - logits_ref ).abs().mean().item()