import os import math import itertools import pytest import torch import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.layers.rotary import apply_rotary_emb from test_util import ( attention_ref, generate_qkv, generate_random_padding_mask, ) from flash_attn_interface import flash_attn_func, flash_attn_varlen_func, flash_attn_combine, flash_attn_with_kvcache DISABLE_BACKWARD = os.getenv("FLASH_ATTENTION_DISABLE_BACKWARD", "FALSE") == "TRUE" DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE" DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE" DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE" DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE" DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE" DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE" DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE" DISABLE_FP8 = os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE" DISABLE_HDIM64 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM64", "FALSE") == "TRUE" DISABLE_HDIM96 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM96", "FALSE") == "TRUE" DISABLE_HDIM128 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM128", "FALSE") == "TRUE" DISABLE_HDIM192 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM192", "FALSE") == "TRUE" DISABLE_HDIM256 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM256", "FALSE") == "TRUE" COMPILED_HDIMS = ( [] + ([64] if not DISABLE_HDIM64 else []) + ([96] if not DISABLE_HDIM96 else []) + ([128] if not DISABLE_HDIM128 else []) + ([192] if not DISABLE_HDIM192 else []) + ([256] if not DISABLE_HDIM256 else []) ) # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])) # @pytest.mark.parametrize("dtype", [torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn]) @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) # @pytest.mark.parametrize("mha_type", ["mha"]) # @pytest.mark.parametrize("deterministic", [False, True]) @pytest.mark.parametrize("deterministic", [False]) @pytest.mark.parametrize("softcap", [0.0] + ([30.0] if not DISABLE_SOFTCAP else [])) # @pytest.mark.parametrize("softcap", [0.0]) @pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else [])) # @pytest.mark.parametrize("local", [False]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize("causal", [False]) # @pytest.mark.parametrize("V_colmajor", [False, True]) @pytest.mark.parametrize("V_colmajor", [False]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256]) # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) # @pytest.mark.parametrize("d", [64, 128, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128]) # @pytest.mark.parametrize("d", [64, 96, 128, 192]) @pytest.mark.parametrize("d", COMPILED_HDIMS) # @pytest.mark.parametrize("d", [128]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 1), (64, 128), (128, 192), (256, 256), (239, 1), (799, 3), (113, 203), (113, 128), (128, 217), (113, 211), (108, 256), (256, 512), (384, 256), (640, 128), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (4096, 4096), (4224, 4224), ], ) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)]) def test_flash_attn_output( seqlen_q, seqlen_k, d, causal, local, softcap, V_colmajor, deterministic, mha_type, dtype ): # sink_token_length = 0 if not local else 4 sink_token_length = 0 if not local else 0 if V_colmajor and (seqlen_k % 16 != 0 or dtype != torch.float8_e4m3fn): pytest.skip("V_colmajor requires seqlen_k to be a multiple of 16 and dtype to be float8_e4m3fn") device = "cuda" # set seed torch.random.manual_seed(0) # batch_size = 40 # nheads = 16 batch_size = 9 if seqlen_k <= 2048 else 2 # batch_size = 1 nheads = 6 # nheads = 1 nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1) dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref) if softcap > 0.0: # Ensure the values of qk are at least within softcap range. q_ref = (q_ref * softcap / 4) q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_() k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_() v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_() # Put window_size after QKV randn so that window_size changes from test to test window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)) # window_size = (-1, -1) if not local else (16, 0) if dtype == torch.float8_e4m3fn: q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)] else: q_descale, k_descale, v_descale = None, None, None q, k, v = [x.detach().to(dtype).requires_grad_() for x in (q_ref, k_ref, v_ref)] if V_colmajor: v = rearrange(rearrange(v.detach(), "b s h d -> b h d s").contiguous(), "b h d s -> b s h d").requires_grad_() out_ref, attn_ref = attention_ref( q_ref, k_ref, v_ref, None, None, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, sink_token_length=sink_token_length, softcap=softcap ) out_pt, attn_pt = attention_ref( q_ref, k_ref, v_ref, None, None, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, sink_token_length=sink_token_length, softcap=softcap, upcast=False, reorder_ops=True, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None, ) # qk = torch.einsum('bshd,bthd->bhst', q_ref, k_ref).float() # m = qk.amax(-1, keepdim=True) # s_tmp = torch.exp((qk - m) / math.sqrt(d)) # exp_sum = s_tmp.sum(-1) # qk = torch.einsum('bthd,bshd->bhts', q_ref.float() / math.sqrt(d), k_ref.float()) # lse_ref = torch.logsumexp(qk, dim=-1) abs_tol = 5e-5 if softcap == 0.0 else 5e-4 print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False] num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1] for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals): out, lse = flash_attn_func( q, k, v, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, sink_token_length=sink_token_length, softcap=softcap, pack_gqa=pack_gqa, num_splits=num_splits ) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") # if not causal: # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}") # breakpoint() # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. multiple = 2 if dtype != torch.float8_e4m3fn else 3 assert (out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item() + abs_tol if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not V_colmajor: g = torch.randn_like(out) do_o = ((g.float() * out.float()).sum(-1)).transpose(1, 2) # import flash_attn_3_cuda # dq, dk, dv, softmax_d, dq_accum, dk_accum, dv_accum = flash_attn_3_cuda.bwd( # g, # q, # k, # v, # out, # lse, # None, # None, # None, # d ** (-0.5), # causal, # window_size[0], window_size[1], # sink_token_length, # softcap, # deterministic, # 0, # sm_margin # ) dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}") # assert (softmax_d - do_o).abs().max().item() <= 1e-5 # assert dq_accum.abs().max().item() == 0.0 # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float()) # P = torch.softmax(qk, -1) # dP = P * (dS - do_o.transpose(1, 2).unsqueeze(1)) # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float()) # dV = torch.einsum('bhts,bthd->bshd', P, g.float()) # dK = torch.einsum('bhts,bthd->bshd', dP, q.float()) # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g) dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g) print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}") print(f"dK max diff: {(dk - dk_ref).abs().max().item()}") print(f"dV max diff: {(dv - dv_ref).abs().max().item()}") print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}") print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}") print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}") print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}") print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}") print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}") print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}") print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}") print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}") # breakpoint() if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not V_colmajor: multiple = 2 assert (dq - dq_ref).abs().max().item() <= multiple * (dq_pt - dq_ref).abs().max().item() + abs_tol assert (dk - dk_ref).abs().max().item() <= multiple * (dk_pt - dk_ref).abs().max().item() + abs_tol assert (dv - dv_ref).abs().max().item() <= multiple * (dv_pt - dv_ref).abs().max().item() + abs_tol # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])) # @pytest.mark.parametrize("dtype", [torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn]) @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) # @pytest.mark.parametrize("mha_type", ["mha"]) # @pytest.mark.parametrize("deterministic", [False, True]) @pytest.mark.parametrize("deterministic", [False]) @pytest.mark.parametrize("softcap", [0.0] + ([30.0] if not DISABLE_SOFTCAP else [])) # @pytest.mark.parametrize("softcap", [0.0]) @pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else [])) # @pytest.mark.parametrize("local", [False]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize("causal", [False]) @pytest.mark.parametrize("add_unused_qkv", [False, True]) # @pytest.mark.parametrize("add_unused_qkv", [True]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256]) # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128]) # @pytest.mark.parametrize("d", [64, 96, 128]) @pytest.mark.parametrize("d", COMPILED_HDIMS) # @pytest.mark.parametrize("d", [128]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 1), (1, 3), (2, 1), (511, 1), (3, 513), (64, 128), (128, 128), (256, 256), (113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (307, 256), (640, 128), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048), ], ) def test_flash_attn_varlen_output( seqlen_q, seqlen_k, d, add_unused_qkv, causal, local, softcap, deterministic, mha_type, dtype ): device = "cuda" # set seed torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local)) # batch_size = 40 # nheads = 16 batch_size = 9 if seqlen_q <= 2048 else 2 nheads = 6 # batch_size = 2 # nheads = 1 nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1) dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref) if softcap > 0.0: # Ensure the values of qk are at least within softcap range. q_ref = (q_ref * softcap / 4).detach().requires_grad_() q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_() k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_() v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_() # Put window_size after QKV randn so that window_size changes from test to test window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)) if dtype == torch.float8_e4m3fn: q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)] else: q_descale, k_descale, v_descale = None, None, None q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)] query_padding_mask = generate_random_padding_mask( seqlen_q, batch_size, device, mode="random", zero_lengths=False ) key_padding_mask = generate_random_padding_mask( seqlen_k, batch_size, device, mode="random", zero_lengths=True ) def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device): if add_unused: another_mask = generate_random_padding_mask(max_seq_len, bs, device) attn_mask = torch.logical_and(padding_mask, another_mask) unused_mask = torch.logical_xor( torch.logical_or(padding_mask, another_mask), attn_mask ) else: attn_mask = padding_mask unused_mask = None return attn_mask, unused_mask query_padding_mask, query_unused_mask = _gen_unused_masks( query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device ) key_padding_mask, key_unused_mask = _gen_unused_masks( key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device ) ( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn, ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False, query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask) q_unpad, k_unpad, v_unpad = [x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)] out_ref, attn_ref = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap ) out_pt, attn_pt = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap, upcast=False, reorder_ops=True, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None, ) print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") if query_unused_mask is not None: q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1") abs_tol = 5e-5 if softcap == 0.0 else 5e-4 pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False] num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1] for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals): out_unpad, lse = flash_attn_varlen_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap, ) out = output_pad_fn(out_unpad) if query_unused_mask is not None: out.masked_fill_(q_zero_masking, 0.0) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") # if not causal: # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}") # breakpoint() # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + abs_tol if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn: g_unpad = torch.randn_like(out_unpad) do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2) # import flash_attn_3_cuda # dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flash_attn_3_cuda.bwd_varlen( # g_unpad, # q_unpad, # k_unpad, # v_unpad, # out_unpad, # lse, # None, # None, # None, # cu_seqlens_q, # cu_seqlens_k, # None, None, # max_seqlen_q, # max_seqlen_k, # d ** (-0.5), # causal, # window_size[0], window_size[1], # softcap, # deterministic, # 0, # sm_margin # ) dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad(out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) if key_unused_mask is not None: k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1") dk.masked_fill_(k_zero_masking, 0.0) dv.masked_fill_(k_zero_masking, 0.0) if query_unused_mask is not None: dq.masked_fill_(q_zero_masking, 0.0) # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}") # assert (softmax_d - do_o).abs().max().item() <= 1e-5 # assert dq_accum.abs().max().item() == 0.0 g = output_pad_fn(g_unpad) # qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float() # qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")) # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float()) # P = torch.softmax(qk, -1) # dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1)) # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float()) # dV = torch.einsum('bhts,bthd->bshd', P, g.float()) # dK = torch.einsum('bhts,bthd->bshd', dP, q.float()) # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g) dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g) print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}") print(f"dK max diff: {(dk - dk_ref).abs().max().item()}") print(f"dV max diff: {(dv - dv_ref).abs().max().item()}") print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}") print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}") print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}") print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}") print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}") print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}") print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}") print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}") print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}") # breakpoint() if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn: multiple = 2 assert (dq - dq_ref).abs().max().item() <= multiple * (dq_pt - dq_ref).abs().max().item() + abs_tol assert (dk - dk_ref).abs().max().item() <= multiple * (dk_pt - dk_ref).abs().max().item() + abs_tol assert (dv - dv_ref).abs().max().item() <= multiple * (dv_pt - dv_ref).abs().max().item() + abs_tol # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])) # @pytest.mark.parametrize("dtype", [torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn]) @pytest.mark.parametrize("num_splits", [1] + ([0] if not DISABLE_SPLIT else [])) # @pytest.mark.parametrize("num_splits", [1]) @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) # @pytest.mark.parametrize("mha_type", ["mha"]) @pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else [])) # @pytest.mark.parametrize("new_kv", [True]) # @pytest.mark.parametrize("local", [False, True]) @pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else [])) # @pytest.mark.parametrize("causal,local", [(False, False), (True, False)]) # @pytest.mark.parametrize("causal,local", [(False, False)]) @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True]) # @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True]) @pytest.mark.parametrize("rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False]) # @pytest.mark.parametrize("rotary_interleaved", [True]) @pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0] if not DISABLE_APPENDKV else [0.0]) # @pytest.mark.parametrize("rotary_fraction", [0.0]) @pytest.mark.parametrize("page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else [])) # @pytest.mark.parametrize("page_size", [None]) @pytest.mark.parametrize("has_leftpad", [False, True]) # @pytest.mark.parametrize("has_leftpad", [False]) @pytest.mark.parametrize("has_batch_idx", [False, True]) # @pytest.mark.parametrize("has_batch_idx", [False]) @pytest.mark.parametrize("varlen_q", [False, True]) # @pytest.mark.parametrize("varlen_q", [True]) # @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) @pytest.mark.parametrize("d", [128]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 128), (1, 339), (3, 1024), (64, 800), (64, 256), (3, 799), (64, 2048), (16, 20000), (1, 128 * 1024), (16, 128 * 1024), (128, 128), (256, 512), # To test appending KV with more than 1 block (2048, 3577), # Enough tile to test persistent scheduler ], ) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)]) def test_flash_attn_kvcache( seqlen_q, seqlen_k, d, varlen_q, has_batch_idx, has_leftpad, page_size, rotary_fraction, rotary_interleaved, seqlen_new_eq_seqlen_q, causal, local, new_kv, mha_type, num_splits, dtype, ): if page_size is not None and seqlen_k % page_size != 0: pytest.skip() if seqlen_q > seqlen_k and new_kv: pytest.skip() if not new_kv and rotary_fraction > 0.0: pytest.skip() device = "cuda" # set seed torch.random.manual_seed(0) batch_size = 5 # batch_size = 1 batch_size_cache = batch_size if not has_batch_idx else batch_size * 2 nheads = 6 # nheads = 1 # rotary_dim must be a multiple of 16, and must be <= d rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16 nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3) assert nheads % nheads_k == 0 dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref) if varlen_q: query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random") q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(q, query_padding_mask) output_pad_fn = lambda output_unpad: pad_input( output_unpad, indices_q, batch_size, seqlen_q ) else: query_padding_mask = None q_unpad = q cu_seqlens_q, max_seqlen_q = None, None # Put window_size after QKV randn so that window_size changes from test to test window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)) seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item() cu_seqlens_k_new = None key_new_padding_mask = None if new_kv: k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref) v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref) if varlen_q: # k & v are also varlen key_new_padding_mask = generate_random_padding_mask(seqlen_new, batch_size, device, mode="random") k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input(k, key_new_padding_mask) v_unpad, *rest = unpad_input(v, key_new_padding_mask) else: k_unpad, v_unpad = k, v else: k, v, k_unpad, v_unpad = None, None, None, None if page_size is None: k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref) v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref) page_table = None else: ( k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks, ) = _generate_block_kvcache( seqlen_k, page_size, batch_size_cache, nheads_k, d, device, dtype_ref ) cache_seqlens = torch.randint( 0 if new_kv else 1, # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough ( (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1) if new_kv else (seqlen_k + 1) ), (batch_size,), dtype=torch.int32, device=device, ) if has_leftpad: cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device) if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device) for i in range(batch_size)]) else: cache_leftpad = None if has_batch_idx: cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[ :batch_size ] else: cache_batch_idx = None arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s") cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1") if not new_kv: key_padding_mask = arange < cache_seqlens_expanded else: k_new_seqlens = key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens if has_leftpad: key_padding_mask = torch.logical_and( key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k) ) # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device) if rotary_dim > 0: angle = ( torch.rand( seqlen_k if page_size is None else num_blocks * page_size, rotary_dim // 2, device=device, ) * 2 * math.pi ) cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref) sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref) if causal or local: q_ro = apply_rotary_emb( q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved ) else: q_ro = rearrange( apply_rotary_emb( rearrange(q, "b s h d -> b 1 (s h) d"), cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved, ), "b 1 (s h) d -> b s h d", s=seqlen_q, ) # q_ro = q k_ro = apply_rotary_emb( k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved ) else: cos, sin = None, None q_ro, k_ro = q, k # k_cache[:, 64:] = -1 k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone() v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone() if new_kv: update_mask = torch.logical_and( cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + k_new_seqlens ) k_to_update = rearrange(k_ro, "b s ... -> (b s) ...") v_to_update = rearrange(v, "b s ... -> (b s) ...") if varlen_q: k_to_update = k_to_update[indices_k] v_to_update = v_to_update[indices_k] k_cache_ref[update_mask] = k_to_update v_cache_ref[update_mask] = v_to_update k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k) v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k) out_ref, _ = attention_ref( q_ro, k_cache_rep, v_cache_rep, query_padding_mask, key_padding_mask, causal=causal, window_size=window_size, key_leftpad=cache_leftpad, ) out_pt, _ = attention_ref( q_ro, k_cache_rep, v_cache_rep, query_padding_mask, key_padding_mask, causal=causal, window_size=window_size, upcast=False, reorder_ops=True, key_leftpad=cache_leftpad, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None ) q = q.to(dtype) q_unpad = q_unpad.to(dtype) if varlen_q else None k_cache = k_cache.to(dtype) v_cache = v_cache.to(dtype) k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None k = k.to(dtype) if k is not None else None v = v.to(dtype) if v is not None else None k_unpad = k_unpad.to(dtype) if k_unpad is not None else None v_unpad = v_unpad.to(dtype) if v_unpad is not None else None cos = cos.to(dtype) if cos is not None else None sin = sin.to(dtype) if sin is not None else None out, lse, *rest = flash_attn_with_kvcache( q if not varlen_q else q_unpad, k_cache if page_size is None else k_cache_paged, v_cache if page_size is None else v_cache_paged, k if not new_kv or not varlen_q else k_unpad, v if not new_kv or not varlen_q else v_unpad, rotary_cos=cos, rotary_sin=sin, cache_seqlens=cache_seqlens, cache_batch_idx=cache_batch_idx, cache_leftpad=cache_leftpad, page_table=page_table, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k_new=cu_seqlens_k_new, max_seqlen_q=max_seqlen_q, causal=causal, window_size=window_size, rotary_interleaved=rotary_interleaved, num_splits=num_splits, return_softmax_lse=True ) if varlen_q: out = output_pad_fn(out) # out = flash_attn_with_kvcache( # q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size # ) # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size) # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref) # m = qk.amax(-1, keepdim=True) # s_tmp = torch.exp((qk - m) / math.sqrt(d)) # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref) # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1) # probs = torch.softmax(qk, dim=-1) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") # breakpoint() # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. if new_kv: if page_size is None: k_cache_select = ( k_cache.to(dtype_ref) if not has_batch_idx else k_cache.to(dtype_ref)[cache_batch_idx] ) v_cache_select = ( v_cache.to(dtype_ref) if not has_batch_idx else v_cache.to(dtype_ref)[cache_batch_idx] ) else: k_cache_select = rearrange( k_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k].to(dtype_ref) v_cache_select = rearrange( v_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k].to(dtype_ref) k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref) v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref) if dtype is not torch.float8_e4m3fn: assert torch.equal(v_cache_select, v_cache_ref) else: assert torch.allclose(v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3) # breakpoint() # if rotary_dim == 0 and dtype is not torch.float8_e4m3fn: if rotary_dim == 0: assert torch.equal(k_cache_select, k_cache_ref) else: # if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3): # breakpoint() if dtype is not torch.float8_e4m3fn: assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3) else: assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1) mult = 4 if dtype == torch.float8_e4m3fn else 2 assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5 mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5 assert (out - out_ref).abs().mean().item() <= mult_mean * (out_pt - out_ref).abs().mean().item() def _generate_block_kvcache(seqlen_k, page_size, batch_size, nheads_k, d, device, dtype): num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3 k_cache_paged = torch.randn( num_blocks, page_size, nheads_k, d, device=device, dtype=dtype ) v_cache_paged = torch.randn( num_blocks, page_size, nheads_k, d, device=device, dtype=dtype ) page_table = rearrange( torch.randperm(num_blocks, dtype=torch.int32, device=device), "(b nblocks) -> b nblocks", b=batch_size, ) k_cache = rearrange( k_cache_paged[page_table.flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k] v_cache = rearrange( v_cache_paged[page_table.flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k] return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks @pytest.mark.parametrize("dtype", [torch.bfloat16]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (64, 8192), ], ) def test_flash_attn_cluster(seqlen_q, seqlen_k, d, causal, dtype): device = "cuda" torch.random.manual_seed(0) batch_size = 2 nheads = 16 nheads_kv = 4 # There was a bug where this would cause "unspecified launch failure" due to Cluster q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype) v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype) for _ in range(100): flash_attn_func(q, k, v, causal=causal) # @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) @pytest.mark.parametrize("dtype", [torch.bfloat16]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128]) # @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [80]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 239), (239, 1), (3, 799), (799, 3), (1024, 128), (97, 97), (128, 128), (200, 200), (256, 256), (257, 257), (384, 384), (512, 512), (768, 768), (1024, 1024), (2048, 2048), ], ) def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, causal, dtype): device = "cuda" # set seed torch.random.manual_seed(0) # Simulate under memory load dummy = torch.empty(70 * 1024 ** 3, dtype=torch.uint8, device=device) batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True) k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True) v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True) torch.random.manual_seed(42) out0, lse0 = flash_attn_func(q, k, v, causal=causal) g = torch.randn_like(out0) dq0, dk0, dv0 = torch.autograd.grad(out0, (q, k, v), g) # Numerical error if we just do any arithmetic on dq dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item() for i in range(1000): torch.random.manual_seed(42) out, lse = flash_attn_func(q, k, v, causal=causal) assert torch.equal(out, out0) assert torch.equal(lse, lse0) dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) dq_equal = torch.allclose(dq, dq0, atol=dq_atol) if not dq_equal: print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}") # breakpoint() assert torch.equal(dv, dv0) assert torch.equal(dk, dk0) assert dq_equal def attention_combine_ref(out_partial, lse_partial): """ out_partial: (num_splits, batch_size, seqlen, nheads, d) lse_partial: (num_splits, batch_size, nheads, seqlen) """ lse = torch.logsumexp(lse_partial, dim=0) scale = torch.exp(lse_partial - lse) scale = torch.where(torch.isinf(scale) | torch.isnan(scale), torch.zeros_like(scale), scale) out = (scale.unsqueeze(-1) * out_partial).sum(0) return out, lse @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float32]) # @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256]) @pytest.mark.parametrize("d", [64, 96, 128, 192, 256]) # @pytest.mark.parametrize("d", [128]) @pytest.mark.parametrize("seqlen", [1, 2, 3, 32, 64, 256, 113, 108, 640, 1024, 2048]) # @pytest.mark.parametrize("seqlen", [12, 32, 64, 256, 112, 108, 640, 1024, 2048, 8192]) # @pytest.mark.parametrize("seqlen", [15]) @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 17, 32, 55, 97, 155]) # @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 11]) # @pytest.mark.parametrize("num_splits", [128]) def test_flash_attn_combine(num_splits, seqlen, d, dtype): if DISABLE_SPLIT: pytest.skip() device = "cuda" # set seed torch.random.manual_seed(1) batch_size = 5 nheads = 16 # batch_size = 1 # nheads = 1 out_partial = torch.randn(num_splits * 2, batch_size, nheads, seqlen, d, device=device, dtype=torch.float32).transpose(2, 3)[:num_splits] # To test non-contiguous tensor lse_partial = torch.randn(num_splits, batch_size, nheads * 2, seqlen, device=device, dtype=torch.float32).transpose(-1, -2)[:, :, :, :nheads] # To test non-contiguous tensor # To test short-circuiting based on num_splits lse_partial[num_splits // 2:, :batch_size // 3] = -float("inf") out, lse = flash_attn_combine(out_partial, lse_partial, out_dtype=dtype) out_ref, lse_ref = attention_combine_ref(out_partial, lse_partial) out_pt = out_ref.to(dtype) print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}") print(f"LSE mean diff: {(lse - lse_ref).abs().mean().item()}") print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") # breakpoint() assert torch.allclose(lse, lse_ref, atol=1e-5, rtol=1e-5) multiple = 2 assert ((out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item()) or torch.allclose(out, out_pt, atol=1e-5, rtol=1e-5) # from flash_attn.utils.benchmark import pytorch_profiler # # pytorch_profiler(torch.sum, lse_partial) # pytorch_profiler(flash_attn_combine, out_partial, lse_partial) # pytorch_profiler(torch.sum, out_partial)