|
@@ -0,0 +1,1006 @@
|
|
|
+import math
|
|
|
+
|
|
|
+import pytest
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from einops import rearrange, repeat
|
|
|
+
|
|
|
+from flash_attn import (flash_attn_func, flash_attn_kvpacked_func,
|
|
|
+ flash_attn_qkvpacked_func, flash_attn_varlen_func,
|
|
|
+ flash_attn_varlen_kvpacked_func,
|
|
|
+ flash_attn_varlen_qkvpacked_func,
|
|
|
+ flash_attn_with_kvcache)
|
|
|
+from flash_attn.bert_padding import pad_input, unpad_input
|
|
|
+from flash_attn.flash_attn_interface import _get_block_size
|
|
|
+from flash_attn.flash_attn_triton import \
|
|
|
+ flash_attn_func as flash_attn_func_triton
|
|
|
+from flash_attn.layers.rotary import apply_rotary_emb
|
|
|
+
|
|
|
+MAX_HEADDIM_SM8x = 192
|
|
|
+
|
|
|
+
|
|
|
+is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
|
|
|
+is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
|
|
|
+is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
|
|
|
+is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
|
|
|
+
|
|
|
+
|
|
|
+def generate_alibi(max_seq_len, num_attention_heads, tp_world_size, tp_index, key_padding_mask=None, device="cuda"):
|
|
|
+ def get_slopes(n):
|
|
|
+ def get_slopes_power_of_2(n):
|
|
|
+ start = (2 ** (-2 ** -(math.log2(n) - 3)))
|
|
|
+ ratio = start
|
|
|
+ return [start * ratio ** i for i in range(n)]
|
|
|
+
|
|
|
+ if math.log2(n).is_integer():
|
|
|
+ return get_slopes_power_of_2(n)
|
|
|
+ else:
|
|
|
+ closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
|
|
+ return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][
|
|
|
+ :n - closest_power_of_2]
|
|
|
+
|
|
|
+ slopes = torch.tensor(get_slopes(num_attention_heads)).to(device=device)
|
|
|
+ # Select the part of the tensor that corresponds to our tensor parallel index.
|
|
|
+ assert (num_attention_heads/tp_world_size).is_integer(
|
|
|
+ ), "it works only when (num_attention_heads/tp_world_size) is integer"
|
|
|
+ nh_tp = num_attention_heads // tp_world_size
|
|
|
+ slopes = slopes[nh_tp * tp_index:nh_tp * (tp_index + 1)]
|
|
|
+
|
|
|
+ if (key_padding_mask is None):
|
|
|
+ arange_tensor = rearrange(torch.arange(max_seq_len), "sqk -> 1 sqk").to(device=device)
|
|
|
+ else:
|
|
|
+ arange_tensor = (key_padding_mask.cumsum(dim=-1, dtype=slopes.dtype) - 1) \
|
|
|
+ .masked_fill_(~key_padding_mask, torch.finfo(torch.float).min).to(device=device)
|
|
|
+
|
|
|
+ arange_tensor = rearrange(arange_tensor, 'b sqk -> b 1 1 sqk')
|
|
|
+ # (1, nheads, 1, seqlen_k) or (batch, nheads, 1, seqlen_k)
|
|
|
+ alibi_tensor = rearrange(slopes, 'nh -> 1 nh 1 1') * arange_tensor
|
|
|
+
|
|
|
+ return alibi_tensor, slopes
|
|
|
+
|
|
|
+
|
|
|
+def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", right_padding=True):
|
|
|
+ assert mode in ["full", "random", "third"]
|
|
|
+ if mode == "full":
|
|
|
+ lengths = torch.full((batch_size, 1), max_seqlen,
|
|
|
+ device=device, dtype=torch.int32)
|
|
|
+ elif mode == "random":
|
|
|
+ lengths = torch.randint(
|
|
|
+ max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
|
|
|
+ )
|
|
|
+ elif mode == "third":
|
|
|
+ lengths = torch.randint(
|
|
|
+ max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
|
|
|
+ if right_padding:
|
|
|
+ padding_mask = (
|
|
|
+ repeat(torch.arange(max_seqlen, device=device),
|
|
|
+ "s -> b s", b=batch_size) < lengths
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ padding_mask = (
|
|
|
+ repeat(torch.arange(start=max_seqlen-1, end=-1, step=-1, device=device),
|
|
|
+ "s -> b s", b=batch_size) < lengths
|
|
|
+ )
|
|
|
+ return padding_mask
|
|
|
+
|
|
|
+
|
|
|
+def generate_qkv(
|
|
|
+ q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
|
|
|
+):
|
|
|
+ """
|
|
|
+ Arguments:
|
|
|
+ q: (batch_size, seqlen_q, nheads, d)
|
|
|
+ k: (batch_size, seqlen_k, nheads_k, d)
|
|
|
+ v: (batch_size, seqlen_k, nheads_k, d)
|
|
|
+ query_padding_mask: (batch_size, seqlen), bool
|
|
|
+ key_padding_mask: (batch_size, seqlen), bool
|
|
|
+ """
|
|
|
+ assert not (kvpacked and qkvpacked)
|
|
|
+ batch_size, seqlen_q, nheads, d = q.shape
|
|
|
+ _, seqlen_k, nheads_k, _ = k.shape
|
|
|
+ assert k.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
|
+ assert v.shape == (batch_size, seqlen_k, nheads_k, d)
|
|
|
+
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
|
|
|
+ q, query_padding_mask)
|
|
|
+
|
|
|
+ def output_pad_fn(output_unpad): return pad_input(
|
|
|
+ output_unpad, indices_q, batch_size, seqlen_q
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ q_unpad = rearrange(q, "b s h d -> (b s) h d")
|
|
|
+ cu_seqlens_q = torch.arange(
|
|
|
+ 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
|
|
|
+ )
|
|
|
+ max_seqlen_q = seqlen_q
|
|
|
+
|
|
|
+ def output_pad_fn(output_unpad): return rearrange(
|
|
|
+ output_unpad, "(b s) h d -> b s h d", b=batch_size
|
|
|
+ )
|
|
|
+
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(
|
|
|
+ k, key_padding_mask)
|
|
|
+ v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
|
|
|
+ else:
|
|
|
+ k_unpad = rearrange(k, "b s h d -> (b s) h d")
|
|
|
+ v_unpad = rearrange(v, "b s h d -> (b s) h d")
|
|
|
+ cu_seqlens_k = torch.arange(
|
|
|
+ 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
|
|
|
+ )
|
|
|
+ max_seqlen_k = seqlen_k
|
|
|
+
|
|
|
+ if qkvpacked:
|
|
|
+ assert (query_padding_mask == key_padding_mask).all()
|
|
|
+ assert nheads == nheads_k
|
|
|
+ qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
|
|
|
+ qkv = torch.stack([q, k, v], dim=2)
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ def dqkv_pad_fn(dqkv_unpad): return pad_input(
|
|
|
+ dqkv_unpad, indices_q, batch_size, seqlen_q)
|
|
|
+ else:
|
|
|
+ def dqkv_pad_fn(dqkv_unpad): return rearrange(
|
|
|
+ dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
|
+ )
|
|
|
+ return (
|
|
|
+ qkv_unpad.detach().requires_grad_(),
|
|
|
+ cu_seqlens_q,
|
|
|
+ max_seqlen_q,
|
|
|
+ qkv.detach().requires_grad_(),
|
|
|
+ output_pad_fn,
|
|
|
+ dqkv_pad_fn,
|
|
|
+ )
|
|
|
+ elif kvpacked:
|
|
|
+ kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
|
|
|
+ kv = torch.stack([k, v], dim=2)
|
|
|
+ dq_pad_fn = output_pad_fn
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ def dkv_pad_fn(dkv_unpad): return pad_input(
|
|
|
+ dkv_unpad, indices_k, batch_size, seqlen_k)
|
|
|
+ else:
|
|
|
+ def dkv_pad_fn(dkv_unpad): return rearrange(
|
|
|
+ dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
|
|
+ )
|
|
|
+ return (
|
|
|
+ q_unpad.detach().requires_grad_(),
|
|
|
+ kv_unpad.detach().requires_grad_(),
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ q.detach().requires_grad_(),
|
|
|
+ kv.detach().requires_grad_(),
|
|
|
+ output_pad_fn,
|
|
|
+ dq_pad_fn,
|
|
|
+ dkv_pad_fn,
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ dq_pad_fn = output_pad_fn
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ def dk_pad_fn(dk_unpad): return pad_input(
|
|
|
+ dk_unpad, indices_k, batch_size, seqlen_k)
|
|
|
+ else:
|
|
|
+ def dk_pad_fn(dk_unpad): return rearrange(
|
|
|
+ dk_unpad, "(b s) h d -> b s h d", b=batch_size)
|
|
|
+ return (
|
|
|
+ q_unpad.detach().requires_grad_(),
|
|
|
+ k_unpad.detach().requires_grad_(),
|
|
|
+ v_unpad.detach().requires_grad_(),
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ q.detach().requires_grad_(),
|
|
|
+ k.detach().requires_grad_(),
|
|
|
+ v.detach().requires_grad_(),
|
|
|
+ output_pad_fn,
|
|
|
+ dq_pad_fn,
|
|
|
+ dk_pad_fn,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def construct_local_mask(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+ query_padding_mask=None,
|
|
|
+ key_padding_mask=None,
|
|
|
+ device=None,
|
|
|
+):
|
|
|
+ row_idx = rearrange(torch.arange(
|
|
|
+ seqlen_q, device=device, dtype=torch.long), "s -> s 1")
|
|
|
+ col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
|
|
|
+ sk = (
|
|
|
+ seqlen_k
|
|
|
+ if key_padding_mask is None
|
|
|
+ else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
|
+ )
|
|
|
+ sq = (
|
|
|
+ seqlen_q
|
|
|
+ if query_padding_mask is None
|
|
|
+ else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
|
|
|
+ )
|
|
|
+ if window_size[0] < 0:
|
|
|
+ return col_idx > row_idx + sk - sq + window_size[1]
|
|
|
+ else:
|
|
|
+ sk = torch.full_like(
|
|
|
+ col_idx, seqlen_k) if key_padding_mask is None else sk
|
|
|
+ return torch.logical_or(
|
|
|
+ col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
|
|
|
+ col_idx < row_idx + sk - sq - window_size[0],
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def attention_ref(
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ query_padding_mask=None,
|
|
|
+ key_padding_mask=None,
|
|
|
+ dropout_p=0.0,
|
|
|
+ dropout_mask=None,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+ upcast=True,
|
|
|
+ reorder_ops=False,
|
|
|
+ bias=None
|
|
|
+):
|
|
|
+ """
|
|
|
+ Arguments:
|
|
|
+ q: (batch_size, seqlen_q, nheads, head_dim)
|
|
|
+ k: (batch_size, seqlen_k, nheads_k, head_dim)
|
|
|
+ v: (batch_size, seqlen_k, nheads_k, head_dim)
|
|
|
+ query_padding_mask: (batch_size, seqlen_q)
|
|
|
+ key_padding_mask: (batch_size, seqlen_k)
|
|
|
+ dropout_p: float
|
|
|
+ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
|
|
|
+ causal: whether to apply causal masking
|
|
|
+ window_size: (int, int), left and right window size
|
|
|
+ upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
|
|
|
+ output back to fp16/bf16.
|
|
|
+ reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
|
|
|
+ without changing the math. This is to estimate the numerical error from operation
|
|
|
+ reordering.
|
|
|
+ Output:
|
|
|
+ output: (batch_size, seqlen_q, nheads, head_dim)
|
|
|
+ attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
|
|
|
+ """
|
|
|
+ if causal:
|
|
|
+ window_size = (window_size[0], 0)
|
|
|
+ dtype_og = q.dtype
|
|
|
+ if upcast:
|
|
|
+ q, k, v = q.float(), k.float(), v.float()
|
|
|
+ seqlen_q, seqlen_k = q.shape[1], k.shape[1]
|
|
|
+ k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
|
|
|
+ v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
|
|
|
+ d = q.shape[-1]
|
|
|
+ if not reorder_ops:
|
|
|
+ scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
|
|
+ else:
|
|
|
+ scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
|
|
|
+ if bias is not None:
|
|
|
+ bias = bias.to(scores.dtype)
|
|
|
+ scores += bias
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ scores.masked_fill_(rearrange(~key_padding_mask,
|
|
|
+ "b s -> b 1 1 s"), float("-inf"))
|
|
|
+ if window_size[0] >= 0 or window_size[1] >= 0:
|
|
|
+ local_mask = construct_local_mask(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ window_size,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ q.device,
|
|
|
+ )
|
|
|
+ scores.masked_fill_(local_mask, float("-inf"))
|
|
|
+ attention = torch.softmax(scores, dim=-1)
|
|
|
+ # Some rows might be completely masked out so we fill them with zero instead of NaN
|
|
|
+ if window_size[0] >= 0 or window_size[1] >= 0:
|
|
|
+ attention = attention.masked_fill(
|
|
|
+ torch.all(local_mask, dim=-1, keepdim=True), 0.0)
|
|
|
+ # We want to mask here so that the attention matrix doesn't have any NaNs
|
|
|
+ # Otherwise we'll get NaN in dV
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ attention = attention.masked_fill(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
|
+ dropout_scaling = 1.0 / (1 - dropout_p)
|
|
|
+ # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
|
|
|
+ # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
|
|
+ if dropout_mask is not None:
|
|
|
+ attention_drop = attention.masked_fill(~dropout_mask, 0.0)
|
|
|
+ else:
|
|
|
+ attention_drop = attention
|
|
|
+ output = torch.einsum(
|
|
|
+ "bhts,bshd->bthd", attention_drop, v * dropout_scaling)
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ output.masked_fill_(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
|
|
|
+ return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|
|
|
+
|
|
|
+
|
|
|
+def attention_kvpacked_ref(
|
|
|
+ q,
|
|
|
+ kv,
|
|
|
+ query_padding_mask=None,
|
|
|
+ key_padding_mask=None,
|
|
|
+ dropout_p=0.0,
|
|
|
+ dropout_mask=None,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+ upcast=True,
|
|
|
+ reorder_ops=False,
|
|
|
+):
|
|
|
+ return attention_ref(
|
|
|
+ q,
|
|
|
+ kv[:, :, 0],
|
|
|
+ kv[:, :, 1],
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ upcast=upcast,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ reorder_ops=reorder_ops,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def attention_qkvpacked_ref(
|
|
|
+ qkv,
|
|
|
+ key_padding_mask=None,
|
|
|
+ dropout_p=0.0,
|
|
|
+ dropout_mask=None,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+ upcast=True,
|
|
|
+ reorder_ops=False,
|
|
|
+):
|
|
|
+ return attention_ref(
|
|
|
+ qkv[:, :, 0],
|
|
|
+ qkv[:, :, 1],
|
|
|
+ qkv[:, :, 2],
|
|
|
+ key_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ dropout_p,
|
|
|
+ dropout_mask,
|
|
|
+ upcast=upcast,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ reorder_ops=reorder_ops,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def generate_sparsity_mask(seqlen, sparsity=0.3):
|
|
|
+ repeats = seqlen // 16 // 2
|
|
|
+ # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
|
|
|
+ # torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
|
+ # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
|
|
|
+ # torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
|
+ # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
|
+ # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
|
|
|
+ nrow, ncol = seqlen // 16, seqlen // 256
|
|
|
+ mask = torch.rand(nrow, ncol, device="cuda") < sparsity
|
|
|
+ return mask
|
|
|
+
|
|
|
+
|
|
|
+def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
|
|
|
+ """
|
|
|
+ Arguments:
|
|
|
+ qkv: (batch_size, seqlen, 3, nheads, head_dim)
|
|
|
+ blockmask: (seqlen / 16, seqlen / 256)
|
|
|
+ attn_mask: (batch_size, seqlen)
|
|
|
+ dropout_p: float
|
|
|
+ dropout_mask: (batch_size, nheads, seqlen, seqlen)
|
|
|
+ Output:
|
|
|
+ output: (batch_size, seqlen, nheads, head_dim)
|
|
|
+ attention: softmax after dropout
|
|
|
+ """
|
|
|
+ q, k, v = qkv.float().unbind(dim=2)
|
|
|
+ d = qkv.shape[-1]
|
|
|
+ seqlen = qkv.shape[1]
|
|
|
+ scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
|
|
+ scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
|
|
|
+ blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
|
|
|
+ blockmask = blockmask[:seqlen, :seqlen]
|
|
|
+ scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
|
|
|
+ attention = torch.softmax(scores, dim=-1)
|
|
|
+ attention = attention.masked_fill(
|
|
|
+ rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
|
|
|
+ attention = attention.masked_fill_(
|
|
|
+ rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
|
|
|
+ attention_drop = attention.masked_fill(
|
|
|
+ ~dropout_mask, 0.0) / (1 - dropout_p)
|
|
|
+ output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
|
|
+ output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
|
|
|
+ return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
|
|
|
+
|
|
|
+
|
|
|
+def convert_flash_attn_S_to_softmax(
|
|
|
+ S,
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ head_dim,
|
|
|
+ is_dropout,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+):
|
|
|
+ """FlashAttention stores the S matrix in a different way.
|
|
|
+ Arguments:
|
|
|
+ S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
|
|
|
+ query_padding_mask: (batch_size, seqlen_q_rounded)
|
|
|
+ key_padding_mask: (batch_size, seqlen_k_rounded)
|
|
|
+ """
|
|
|
+ if causal:
|
|
|
+ window_size = (window_size[0], 0)
|
|
|
+ seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
|
|
|
+ warps_n = 4
|
|
|
+ blocksize_m, blocksize_n = _get_block_size(
|
|
|
+ S.device, head_dim, is_dropout, causal)
|
|
|
+ nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
|
|
|
+ nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
|
|
|
+ mmas_n = (blocksize_n + 16 - 1) // 16
|
|
|
+ S_flat = rearrange(
|
|
|
+ S,
|
|
|
+ "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
|
|
|
+ blocksize_m=blocksize_m,
|
|
|
+ blocksize_n=blocksize_n,
|
|
|
+ )
|
|
|
+ S_converted = rearrange(
|
|
|
+ S_flat,
|
|
|
+ "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
|
|
|
+ mmas_n=mmas_n,
|
|
|
+ warps_n=warps_n,
|
|
|
+ eight=8,
|
|
|
+ c0=2,
|
|
|
+ c1=2,
|
|
|
+ c2=2,
|
|
|
+ four=4,
|
|
|
+ )
|
|
|
+
|
|
|
+ if window_size[0] >= 0 or window_size[1] >= 0:
|
|
|
+ local_mask = construct_local_mask(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ window_size,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ S.device,
|
|
|
+ )
|
|
|
+ local_mask = F.pad(
|
|
|
+ local_mask,
|
|
|
+ (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
|
|
|
+ value=True,
|
|
|
+ )
|
|
|
+ S_converted.masked_fill_(local_mask, 0.0)
|
|
|
+
|
|
|
+ # Need to zero out things not in attention_mask in case S was initialized with random values
|
|
|
+ # and some of those values aren't overwritten.
|
|
|
+ seqlen_q_og = (
|
|
|
+ query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
|
|
|
+ )
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ query_padding_mask = F.pad(
|
|
|
+ query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
|
|
|
+ S_converted = S_converted.masked_fill(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
|
+ seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ key_padding_mask = F.pad(
|
|
|
+ key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
|
|
|
+ S_converted = S_converted.masked_fill(
|
|
|
+ rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
|
|
|
+ S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
|
|
|
+ S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
|
|
|
+ return S_converted[:, :, :seqlen_q, :seqlen_k]
|
|
|
+
|
|
|
+
|
|
|
+def normalize_flash_attn_S(
|
|
|
+ attn_unnorm,
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ query_padding_mask=None,
|
|
|
+ key_padding_mask=None,
|
|
|
+ is_dropout=False,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+):
|
|
|
+ """
|
|
|
+ Arguments:
|
|
|
+ q: (batch_size, seqlen_q, nheads, head_dim)
|
|
|
+ k, v: (batch_size, seqlen_k, nheads, head_dim)
|
|
|
+ key_padding_mask: (batch_size, seqlen_q)
|
|
|
+ Output:
|
|
|
+ softmax_lse: (batch_size, nheads, seqlen_q)
|
|
|
+ softmax_max: (batch_size, nheads, seqlen_q)
|
|
|
+ """
|
|
|
+ if causal:
|
|
|
+ window_size = (window_size[0], 0)
|
|
|
+ q, k, v = q.float(), k.float(), v.float()
|
|
|
+ _, seqlen_q, _, head_dim = q.shape
|
|
|
+ seqlen_k = k.shape[1]
|
|
|
+ scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ scores.masked_fill_(rearrange(~key_padding_mask,
|
|
|
+ "b s -> b 1 1 s"), float("-inf"))
|
|
|
+ if window_size[0] >= 0 or window_size[1] >= 0:
|
|
|
+ local_mask = construct_local_mask(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ window_size,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ q.device,
|
|
|
+ )
|
|
|
+ scores.masked_fill_(local_mask, float("-inf"))
|
|
|
+ _, block_size_n = _get_block_size(
|
|
|
+ scores.device, head_dim, is_dropout, causal)
|
|
|
+ scores_block = scores.split(block_size_n, dim=-1)
|
|
|
+ lse_block = torch.stack([torch.logsumexp(s, dim=-1)
|
|
|
+ for s in scores_block], dim=-1)
|
|
|
+ lse = torch.logsumexp(lse_block, dim=-1)
|
|
|
+ # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
|
|
|
+ # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
|
|
|
+ lse[lse == float("-inf")] = float("inf")
|
|
|
+ scores_max_block = torch.stack(
|
|
|
+ [torch.amax(s, dim=-1) for s in scores_block], dim=-1)
|
|
|
+ cummax_block = torch.cummax(
|
|
|
+ scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
|
|
|
+ attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
|
|
|
+ attn_norm = torch.cat(
|
|
|
+ [
|
|
|
+ a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
|
|
|
+ for a, m in zip(attn_unnorm_block, cummax_block)
|
|
|
+ ],
|
|
|
+ dim=-1,
|
|
|
+ )
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ attn_norm.masked_fill_(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
|
|
+ return attn_norm.to(dtype=attn_unnorm.dtype)
|
|
|
+
|
|
|
+
|
|
|
+def get_dropout_fraction(
|
|
|
+ dropout_mask,
|
|
|
+ query_padding_mask=None,
|
|
|
+ key_padding_mask=None,
|
|
|
+ causal=False,
|
|
|
+ window_size=(-1, -1), # -1 means infinite window size
|
|
|
+):
|
|
|
+ """
|
|
|
+ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
|
|
|
+ query_padding_mask: (batch_size, seqlen_q)
|
|
|
+ key_padding_mask: (batch_size, seqlen_k)
|
|
|
+ """
|
|
|
+ if causal:
|
|
|
+ window_size = (window_size[0], 0)
|
|
|
+ batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
|
|
|
+ dropped = ~dropout_mask
|
|
|
+ valid = torch.ones_like(dropout_mask)
|
|
|
+ if query_padding_mask is not None:
|
|
|
+ dropped.masked_fill_(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
|
|
|
+ valid.masked_fill_(
|
|
|
+ rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
|
|
|
+ if key_padding_mask is not None:
|
|
|
+ dropped.masked_fill_(
|
|
|
+ rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
|
|
|
+ valid.masked_fill_(
|
|
|
+ rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
|
|
|
+ if window_size[0] >= 0 or window_size[1] >= 0:
|
|
|
+ local_mask = construct_local_mask(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ window_size,
|
|
|
+ query_padding_mask,
|
|
|
+ key_padding_mask,
|
|
|
+ dropout_mask.device,
|
|
|
+ )
|
|
|
+ dropped.masked_fill_(local_mask, False)
|
|
|
+ valid.masked_fill_(local_mask, False)
|
|
|
+ dropped_total = dropped.sum()
|
|
|
+ return dropped.sum() / valid.sum()
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "dtype", [torch.float16]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "b_sq",
|
|
|
+ [
|
|
|
+ (32, 512),
|
|
|
+ (16, 1024),
|
|
|
+ (8, 2048),
|
|
|
+ (4, 4096),
|
|
|
+ (2, 8192),
|
|
|
+ (1, 16384)
|
|
|
+ ]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "nh_hd",
|
|
|
+ [
|
|
|
+ (32, 64),
|
|
|
+ (16, 128),
|
|
|
+ (40, 128) # non power of 2 nh
|
|
|
+ ]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "tp_world_size", [1, 2, 4]
|
|
|
+)
|
|
|
+def test_flash_attn_func(b_sq, nh_hd, tp_world_size, dtype):
|
|
|
+ b, sq = b_sq
|
|
|
+ nh, hd = nh_hd
|
|
|
+ nh_tp = nh // tp_world_size
|
|
|
+ q, k, v = [torch.randn(b, sq, nh_tp, hd, device="cuda",
|
|
|
+ dtype=dtype, requires_grad=True) for _ in range(3)]
|
|
|
+ dout = torch.rand_like(q)
|
|
|
+
|
|
|
+ for tp_index in range(tp_world_size):
|
|
|
+ alibi, alibi_slopes = generate_alibi(
|
|
|
+ max_seq_len=sq,
|
|
|
+ num_attention_heads=nh,
|
|
|
+ tp_world_size=tp_world_size,
|
|
|
+ tp_index=tp_index,
|
|
|
+ key_padding_mask=None,
|
|
|
+ device="cuda"
|
|
|
+ )
|
|
|
+
|
|
|
+ triton_out = flash_attn_func_triton(
|
|
|
+ q, k, v, alibi, True, hd**(-0.5))
|
|
|
+ triton_out.backward(dout)
|
|
|
+ triton_dq, q.grad = q.grad.clone(), None
|
|
|
+ triton_dk, k.grad = k.grad.clone(), None
|
|
|
+ triton_dv, v.grad = v.grad.clone(), None
|
|
|
+
|
|
|
+ flash_out = flash_attn_func(q, k, v, causal=True, alibi_slopes=repeat(alibi_slopes, "nh -> b nh", b=b))
|
|
|
+ flash_out.backward(dout)
|
|
|
+ flash_dq, q.grad = q.grad.clone(), None
|
|
|
+ flash_dk, k.grad = k.grad.clone(), None
|
|
|
+ flash_dv, v.grad = v.grad.clone(), None
|
|
|
+
|
|
|
+ assert torch.allclose(flash_out, triton_out, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dq, triton_dq, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dk, triton_dk, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dv, triton_dv, atol=1e-2, rtol=0.)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "dtype", [torch.float16]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "right_padding", [True, False]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "b_sq",
|
|
|
+ [
|
|
|
+ (32, 512),
|
|
|
+ (16, 1024),
|
|
|
+ (8, 2048),
|
|
|
+ (4, 4096),
|
|
|
+ (2, 8192),
|
|
|
+ (1, 16384)
|
|
|
+ ]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "nh_hd",
|
|
|
+ [
|
|
|
+ (32, 64),
|
|
|
+ (16, 128),
|
|
|
+ (40, 128) # non power of 2 nh
|
|
|
+ ]
|
|
|
+)
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "tp_world_size", [1, 2, 4]
|
|
|
+)
|
|
|
+def test_flash_attn_varlen_func(b_sq, nh_hd, tp_world_size, right_padding, dtype):
|
|
|
+ b, sqk = b_sq
|
|
|
+ nh, hd = nh_hd
|
|
|
+ nh_tp = nh // tp_world_size
|
|
|
+ # flash_attn_func_triton(), flash-attention v2 (above v2.1) causal logic are different
|
|
|
+ # so only (seqlen_q == 1, causal=False to triton ver.) shows correct results
|
|
|
+ # https://github.com/huggingface/text-generation-inference/blob/v1.1.1/server/text_generation_server/models/custom_modeling/mpt_modeling.py#L53-L63
|
|
|
+ q = torch.randn(b, 1, nh_tp, hd, device="cuda", dtype=dtype, requires_grad=True)
|
|
|
+ k, v = [torch.randn(b, sqk, nh_tp, hd, device="cuda",
|
|
|
+ dtype=dtype, requires_grad=True) for _ in range(2)]
|
|
|
+ dout = torch.rand_like(q)
|
|
|
+
|
|
|
+ padding_mask = generate_random_padding_mask(sqk, b, "cuda", "random", right_padding)
|
|
|
+ (
|
|
|
+ q_unpad,
|
|
|
+ k_unpad,
|
|
|
+ v_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ q,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ output_pad_fn,
|
|
|
+ dq_pad_fn,
|
|
|
+ dk_pad_fn,
|
|
|
+ ) = generate_qkv(q, k, v, None, padding_mask, kvpacked=False)
|
|
|
+
|
|
|
+ for tp_index in range(tp_world_size):
|
|
|
+ alibi, alibi_slopes = generate_alibi(
|
|
|
+ max_seq_len=sqk,
|
|
|
+ num_attention_heads=nh,
|
|
|
+ tp_world_size=tp_world_size,
|
|
|
+ tp_index=tp_index,
|
|
|
+ key_padding_mask=padding_mask,
|
|
|
+ device="cuda"
|
|
|
+ )
|
|
|
+
|
|
|
+ triton_out = flash_attn_func_triton(
|
|
|
+ q, k, v, alibi, False, hd**(-0.5))
|
|
|
+ triton_out.backward(dout)
|
|
|
+ triton_dq, q.grad = q.grad.clone(), None
|
|
|
+ triton_dk, k.grad = k.grad.clone(), None
|
|
|
+ triton_dv, v.grad = v.grad.clone(), None
|
|
|
+
|
|
|
+ flash_out_unpad = flash_attn_varlen_func(
|
|
|
+ q_unpad,
|
|
|
+ k_unpad,
|
|
|
+ v_unpad,
|
|
|
+ cu_seqlens_q,
|
|
|
+ cu_seqlens_k,
|
|
|
+ max_seqlen_q,
|
|
|
+ max_seqlen_k,
|
|
|
+ causal=True,
|
|
|
+ alibi_slopes=repeat(alibi_slopes, "nh -> b nh", b=b)
|
|
|
+ )
|
|
|
+ flash_out = output_pad_fn(flash_out_unpad)
|
|
|
+ flash_out.backward(dout)
|
|
|
+ flash_dq_unpad, q_unpad.grad = q_unpad.grad.clone(), None
|
|
|
+ flash_dk_unpad, k_unpad.grad = k_unpad.grad.clone(), None
|
|
|
+ flash_dv_unpad, v_unpad.grad = v_unpad.grad.clone(), None
|
|
|
+ flash_dq = dq_pad_fn(flash_dq_unpad)
|
|
|
+ flash_dk = dk_pad_fn(flash_dk_unpad)
|
|
|
+ flash_dv = dk_pad_fn(flash_dv_unpad)
|
|
|
+
|
|
|
+ assert torch.allclose(flash_out, triton_out, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dq, triton_dq, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dk, triton_dk, atol=1e-2, rtol=0.)
|
|
|
+ assert torch.allclose(flash_dv, triton_dv, atol=1e-2, rtol=0.)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("alibi", [True])
|
|
|
+@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
|
|
|
+# @pytest.mark.parametrize("dtype", [torch.float16])
|
|
|
+@pytest.mark.parametrize("num_splits", [1, 0])
|
|
|
+# @pytest.mark.parametrize("num_splits", [0])
|
|
|
+@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
|
|
|
+# @pytest.mark.parametrize("mha_type", ["mha"])
|
|
|
+@pytest.mark.parametrize("new_kv", [False, True])
|
|
|
+# @pytest.mark.parametrize("new_kv", [True])
|
|
|
+# @pytest.mark.parametrize("local", [False, True])
|
|
|
+@pytest.mark.parametrize("local", [False])
|
|
|
+# @pytest.mark.parametrize("causal", [False, True])
|
|
|
+@pytest.mark.parametrize("causal", [True])
|
|
|
+@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
|
|
|
+# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
|
|
|
+@pytest.mark.parametrize("rotary_interleaved", [False, True])
|
|
|
+# @pytest.mark.parametrize("rotary_interleaved", [False])
|
|
|
+@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
|
|
|
+# @pytest.mark.parametrize("rotary_fraction", [0.0])
|
|
|
+@pytest.mark.parametrize("has_batch_idx", [False, True])
|
|
|
+# @pytest.mark.parametrize("has_batch_idx", [True])
|
|
|
+@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
|
|
|
+# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
|
|
|
+# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
|
|
|
+# @pytest.mark.parametrize('d', [56, 80])
|
|
|
+# @pytest.mark.parametrize("d", [128])
|
|
|
+@pytest.mark.parametrize(
|
|
|
+ "seqlen_q,seqlen_k",
|
|
|
+ [
|
|
|
+ (1, 128),
|
|
|
+ (1, 339),
|
|
|
+ (3, 1024),
|
|
|
+ (64, 800),
|
|
|
+ (64, 256),
|
|
|
+ (3, 799),
|
|
|
+ (64, 2048),
|
|
|
+ (16, 20000),
|
|
|
+ (1, 128 * 1024),
|
|
|
+ (16, 128 * 1024),
|
|
|
+ (128, 128),
|
|
|
+ ],
|
|
|
+)
|
|
|
+# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
|
|
|
+def test_flash_attn_kvcache(
|
|
|
+ seqlen_q,
|
|
|
+ seqlen_k,
|
|
|
+ d,
|
|
|
+ has_batch_idx,
|
|
|
+ rotary_fraction,
|
|
|
+ rotary_interleaved,
|
|
|
+ seqlen_new_eq_seqlen_q,
|
|
|
+ causal,
|
|
|
+ local,
|
|
|
+ new_kv,
|
|
|
+ mha_type,
|
|
|
+ num_splits,
|
|
|
+ dtype,
|
|
|
+ alibi,
|
|
|
+):
|
|
|
+ if seqlen_q > seqlen_k and new_kv:
|
|
|
+ pytest.skip()
|
|
|
+ if not new_kv and rotary_fraction > 0.0:
|
|
|
+ pytest.skip()
|
|
|
+ device = "cuda"
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 2
|
|
|
+ batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
|
|
|
+ nheads = 8
|
|
|
+ # rotary_dim must be a multiple of 16, and must be <= d
|
|
|
+ rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
|
|
|
+ nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 4)
|
|
|
+ assert nheads % nheads_k == 0
|
|
|
+ window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
|
|
|
+ q = torch.randn(batch_size, seqlen_q, nheads,
|
|
|
+ d, device=device, dtype=dtype)
|
|
|
+ seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(
|
|
|
+ 1, seqlen_q + 1, (1,)).item()
|
|
|
+ if new_kv:
|
|
|
+ k = torch.randn(batch_size, seqlen_new, nheads_k,
|
|
|
+ d, device=device, dtype=dtype)
|
|
|
+ v = torch.randn(batch_size, seqlen_new, nheads_k,
|
|
|
+ d, device=device, dtype=dtype)
|
|
|
+ else:
|
|
|
+ k, v = None, None
|
|
|
+ k_cache = torch.randn(batch_size_cache, seqlen_k,
|
|
|
+ nheads_k, d, device=device, dtype=dtype)
|
|
|
+ v_cache = torch.randn(batch_size_cache, seqlen_k,
|
|
|
+ nheads_k, d, device=device, dtype=dtype)
|
|
|
+ cache_seqlens = torch.randint(
|
|
|
+ 0,
|
|
|
+ # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
|
|
|
+ (seqlen_k - (seqlen_q if (causal or local)
|
|
|
+ and rotary_dim > 1 else seqlen_new) + 1)
|
|
|
+ if new_kv
|
|
|
+ else (seqlen_k + 1),
|
|
|
+ (batch_size,),
|
|
|
+ dtype=torch.int32,
|
|
|
+ device=device,
|
|
|
+ )
|
|
|
+ if has_batch_idx:
|
|
|
+ cache_batch_idx = torch.randperm(
|
|
|
+ batch_size_cache, dtype=torch.int32, device=device)[:batch_size]
|
|
|
+ else:
|
|
|
+ cache_batch_idx = None
|
|
|
+ # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
|
|
|
+ if rotary_dim > 0:
|
|
|
+ angle = torch.rand(seqlen_k, rotary_dim // 2,
|
|
|
+ device=device) * 2 * math.pi
|
|
|
+ cos = torch.cos(angle).to(dtype=dtype)
|
|
|
+ sin = torch.sin(angle).to(dtype=dtype)
|
|
|
+ if causal or local:
|
|
|
+ q_ro = apply_rotary_emb(
|
|
|
+ q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ q_ro = rearrange(
|
|
|
+ apply_rotary_emb(
|
|
|
+ rearrange(q, "b s h d -> b 1 (s h) d"),
|
|
|
+ cos,
|
|
|
+ sin,
|
|
|
+ seqlen_offsets=cache_seqlens,
|
|
|
+ interleaved=rotary_interleaved,
|
|
|
+ ),
|
|
|
+ "b 1 (s h) d -> b s h d",
|
|
|
+ s=seqlen_q,
|
|
|
+ )
|
|
|
+ # q_ro = q
|
|
|
+ k_ro = apply_rotary_emb(
|
|
|
+ k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ cos, sin = None, None
|
|
|
+ q_ro, k_ro = q, k
|
|
|
+ # k_cache[:, 64:] = -1
|
|
|
+ k_cache_ref = (
|
|
|
+ k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
|
|
|
+ v_cache_ref = (
|
|
|
+ v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
|
|
|
+ arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
|
|
|
+ cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
|
|
|
+ if new_kv:
|
|
|
+ update_mask = torch.logical_and(
|
|
|
+ cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
|
|
|
+ )
|
|
|
+ k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
|
|
|
+ v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
|
|
|
+ k_cache_rep = repeat(
|
|
|
+ k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ v_cache_rep = repeat(
|
|
|
+ v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
|
|
|
+ if alibi:
|
|
|
+ seqlen_alibi = k_cache_rep.shape[1]
|
|
|
+ alibi_tensor, alibi_slopes = generate_alibi(
|
|
|
+ max_seq_len=seqlen_alibi,
|
|
|
+ num_attention_heads=nheads,
|
|
|
+ tp_world_size=1,
|
|
|
+ tp_index=0,
|
|
|
+ key_padding_mask=None,
|
|
|
+ device="cuda"
|
|
|
+ )
|
|
|
+ # alibi_tensor = alibi_tensor.expand(batch_size, -1, seqlen_q, -1)
|
|
|
+ alibi_slopes = repeat(alibi_slopes, "nh -> b nh", b=batch_size)
|
|
|
+ if alibi_tensor.abs().max().item() >= torch.finfo(dtype).max:
|
|
|
+ pytest.skip()
|
|
|
+ else:
|
|
|
+ alibi_tensor, alibi_slopes = None, None
|
|
|
+ out = flash_attn_with_kvcache(
|
|
|
+ q,
|
|
|
+ k_cache,
|
|
|
+ v_cache,
|
|
|
+ k,
|
|
|
+ v,
|
|
|
+ cos,
|
|
|
+ sin,
|
|
|
+ cache_seqlens,
|
|
|
+ cache_batch_idx,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ rotary_interleaved=rotary_interleaved,
|
|
|
+ num_splits=num_splits,
|
|
|
+ alibi_slopes=alibi_slopes
|
|
|
+ )
|
|
|
+ # out = flash_attn_with_kvcache(
|
|
|
+ # q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
|
|
|
+ # )
|
|
|
+ # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
|
|
|
+ # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
|
|
|
+ # m = qk.amax(-1, keepdim=True)
|
|
|
+ # s_tmp = torch.exp((qk - m) / math.sqrt(d))
|
|
|
+ # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
|
|
|
+ # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
|
|
|
+ # probs = torch.softmax(qk, dim=-1)
|
|
|
+ key_padding_mask = arange < cache_seqlens_expanded + \
|
|
|
+ (seqlen_new if new_kv else 0)
|
|
|
+ out_ref, _ = attention_ref(
|
|
|
+ q_ro,
|
|
|
+ k_cache_rep,
|
|
|
+ v_cache_rep,
|
|
|
+ None,
|
|
|
+ key_padding_mask,
|
|
|
+ 0.0,
|
|
|
+ None,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ bias=alibi_tensor
|
|
|
+ )
|
|
|
+ out_pt, _ = attention_ref(
|
|
|
+ q_ro,
|
|
|
+ k_cache_rep,
|
|
|
+ v_cache_rep,
|
|
|
+ None,
|
|
|
+ key_padding_mask,
|
|
|
+ 0.0,
|
|
|
+ None,
|
|
|
+ causal=causal,
|
|
|
+ window_size=window_size,
|
|
|
+ upcast=False,
|
|
|
+ reorder_ops=True,
|
|
|
+ bias=alibi_tensor
|
|
|
+ )
|
|
|
+ print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
+ print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
+ print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
|
|
|
+ print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
|
|
|
+
|
|
|
+ # Check that FlashAttention's numerical error is at most twice the numerical error
|
|
|
+ # of a Pytorch implementation.
|
|
|
+ if new_kv:
|
|
|
+ k_cache_select = k_cache if not has_batch_idx else k_cache[cache_batch_idx]
|
|
|
+ v_cache_select = v_cache if not has_batch_idx else v_cache[cache_batch_idx]
|
|
|
+ assert torch.allclose(k_cache_select, k_cache_ref,
|
|
|
+ rtol=1e-3, atol=1e-3)
|
|
|
+ assert torch.equal(v_cache_select, v_cache_ref)
|
|
|
+ assert (out - out_ref).abs().max().item() <= 3 * \
|
|
|
+ (out_pt - out_ref).abs().max().item() + 1e-5
|