|
@@ -34,7 +34,6 @@ def cross_entropy_fwd_kernel(
|
|
|
total_classes,
|
|
|
class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
|
|
|
n_cols, # shapes
|
|
|
- n_rows,
|
|
|
logits_row_stride, # strides
|
|
|
BLOCK_SIZE: tl.constexpr,
|
|
|
HAS_SMOOTHING: tl.constexpr,
|
|
@@ -42,26 +41,30 @@ def cross_entropy_fwd_kernel(
|
|
|
SPLIT: tl.constexpr,
|
|
|
):
|
|
|
row_idx = tl.program_id(0)
|
|
|
- col_block_idx = tl.program_id(1)
|
|
|
logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
|
|
|
- col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
|
|
+ sum_logits = 0.0 # For smoothing
|
|
|
+ # Statistics for online softmax
|
|
|
+ m_i = -float("inf")
|
|
|
+ l_i = 0.0
|
|
|
+ for col_offset in range(0, n_cols, BLOCK_SIZE):
|
|
|
+ cols = col_offset + tl.arange(0, BLOCK_SIZE)
|
|
|
+ logits = tl.load(logits_ptr + cols, mask=cols < n_cols, other=-float("inf")).to(
|
|
|
+ tl.float32
|
|
|
+ ) * logit_scale
|
|
|
+ if HAS_SMOOTHING:
|
|
|
+ sum_logits += tl.sum(tl.where(cols < n_cols, logits, 0.0))
|
|
|
+ m_i_new = tl.maximum(m_i, tl.max(logits))
|
|
|
+ l_i = tl.exp(m_i - m_i_new) * l_i + tl.sum(tl.exp(logits - m_i_new))
|
|
|
+ m_i = m_i_new
|
|
|
+ lse = tl.log(l_i) + m_i
|
|
|
+ tl.store(lse_ptr + row_idx, lse)
|
|
|
label_idx = tl.load(labels_ptr + row_idx)
|
|
|
- logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to(
|
|
|
- tl.float32
|
|
|
- ) * logit_scale
|
|
|
- max_logits = tl.max(logits, 0)
|
|
|
- if HAS_SMOOTHING:
|
|
|
- sum_logits = tl.sum(tl.where(col_offsets < n_cols, logits, 0.0), 0)
|
|
|
- lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
|
|
|
- tl.store(lse_ptr + col_block_idx * n_rows + row_idx, lse)
|
|
|
if label_idx == ignore_index:
|
|
|
loss = 0.0
|
|
|
z_loss = 0.0
|
|
|
else:
|
|
|
label_idx -= class_start_idx
|
|
|
- if label_idx >= col_block_idx * BLOCK_SIZE and label_idx < min(
|
|
|
- n_cols, (col_block_idx + 1) * BLOCK_SIZE
|
|
|
- ):
|
|
|
+ if label_idx >= 0 and label_idx < n_cols:
|
|
|
logits_label = tl.load(logits_ptr + label_idx) * logit_scale
|
|
|
if HAS_SMOOTHING:
|
|
|
loss = (
|
|
@@ -82,9 +85,9 @@ def cross_entropy_fwd_kernel(
|
|
|
loss += z_loss
|
|
|
else:
|
|
|
z_loss = 0.0
|
|
|
- tl.store(loss_ptr + col_block_idx * n_rows + row_idx, loss)
|
|
|
+ tl.store(loss_ptr + row_idx, loss)
|
|
|
if not SPLIT:
|
|
|
- tl.store(z_loss_ptr + col_block_idx * n_rows + row_idx, z_loss)
|
|
|
+ tl.store(z_loss_ptr + row_idx, z_loss)
|
|
|
|
|
|
|
|
|
@triton.heuristics(
|
|
@@ -161,27 +164,20 @@ class CrossEntropyLoss(torch.autograd.Function):
|
|
|
|
|
|
if logits.stride(-1) != 1:
|
|
|
logits = logits.contiguous()
|
|
|
- # Set these similar to https://github.com/openai/triton/blob/main/python/tutorials/02-fused-softmax.py
|
|
|
- MAX_BLOCK_SIZE = 64 * 1024
|
|
|
+ MAX_BLOCK_SIZE = 16 * 1024
|
|
|
BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE)
|
|
|
num_warps = (
|
|
|
4
|
|
|
if BLOCK_SIZE < 2048
|
|
|
else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32))
|
|
|
)
|
|
|
- # We may split the lse computation across multiple blocks, then do a reduction
|
|
|
- # lse(local_lse) to get the final LSE. This is faster for large n_cols (e.g., > 64k)
|
|
|
- # where having just one thread block processing more than 64k elements is slow.
|
|
|
- split = world_size > 1 or n_cols > MAX_BLOCK_SIZE
|
|
|
- n_splits = (n_cols + BLOCK_SIZE - 1) // BLOCK_SIZE
|
|
|
- loss_shape = (n_splits, n_rows) if n_splits > 1 else (n_rows,)
|
|
|
- losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
|
|
|
- lse = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
|
|
|
- z_losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
|
|
|
+ losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
|
|
+ lse = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
|
|
+ z_losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
|
|
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
|
|
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
|
|
with torch.cuda.device(logits.device.index):
|
|
|
- cross_entropy_fwd_kernel[(n_rows, n_splits)](
|
|
|
+ cross_entropy_fwd_kernel[(n_rows,)](
|
|
|
losses, # data ptrs
|
|
|
lse,
|
|
|
z_losses,
|
|
@@ -194,23 +190,19 @@ class CrossEntropyLoss(torch.autograd.Function):
|
|
|
total_classes,
|
|
|
class_start_idx,
|
|
|
n_cols, # shapes
|
|
|
- n_rows,
|
|
|
logits.stride(0), # strides
|
|
|
BLOCK_SIZE=BLOCK_SIZE, # constants
|
|
|
num_warps=num_warps,
|
|
|
- SPLIT=split,
|
|
|
+ SPLIT=world_size > 1,
|
|
|
)
|
|
|
|
|
|
- if split:
|
|
|
+ if world_size > 1:
|
|
|
# If there's no smoothing, if labels are in the vocab of this partition, losses contains
|
|
|
# - predicted logit, and 0 otherwise.
|
|
|
# If there's smoothing=0.1, for labels in the vocab of this partition, losses contains
|
|
|
# -0.9 * predicted logit - 0.1 * sum logit / total_classes.
|
|
|
# For labels not in the vocab of this partition, losses contains
|
|
|
# -0.1 * sum logit / total_classes.
|
|
|
- if n_splits > 1:
|
|
|
- lse = torch.logsumexp(lse, dim=0)
|
|
|
- losses = losses.sum(dim=0)
|
|
|
if world_size > 1:
|
|
|
lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device)
|
|
|
torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group)
|
|
@@ -243,6 +235,7 @@ class CrossEntropyLoss(torch.autograd.Function):
|
|
|
ctx.class_start_idx = class_start_idx
|
|
|
ctx.inplace_backward = inplace_backward
|
|
|
|
|
|
+
|
|
|
return losses, z_losses
|
|
|
|
|
|
@staticmethod
|