Преглед изворни кода

Implement Tensor Parallel for transformer Block

Tri Dao пре 2 година
родитељ
комит
a8cfe51551

+ 9 - 0
csrc/layer_norm/ln_api.cpp

@@ -1,5 +1,6 @@
 #include <torch/extension.h>
 #include "ATen/cuda/CUDAContext.h"
+#include <c10/cuda/CUDAGuard.h>
 
 #include "ln.h"
 
@@ -166,6 +167,10 @@ std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0,      // Input:
 
     TORCH_CHECK(epsilon >= 0.f);
 
+    // Otherwise the kernel will be launched from cuda:0 device
+    // Cast to char to avoid compiler warning about narrowing
+    at::cuda::CUDAGuard device_guard{(char)x0.get_device()};
+
     auto opts = x0.options();
 
     bool save_x = x1_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || x0_subset_.has_value() || (itype != rtype);
@@ -364,6 +369,10 @@ std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz,     // BxSxhidd
 
     TORCH_CHECK(gamma.numel() == cols);
 
+    // Otherwise the kernel will be launched from cuda:0 device
+    // Cast to char to avoid compiler warning about narrowing
+    at::cuda::CUDAGuard device_guard{(char)dz.get_device()};
+
     auto opts = x.options();
 
     auto dx0 = torch::empty(x0_sizes, opts.dtype(itype));

+ 9 - 1
flash_attn/modules/block.py

@@ -23,7 +23,7 @@ class Block(nn.Module):
 
     def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm,
                  dropout_cls=nn.Dropout, prenorm=True, resid_dropout=0., drop_path=0.,
-                 fused_dropout_add_ln=False, return_residual=False):
+                 fused_dropout_add_ln=False, return_residual=False, sequence_parallel=False):
         """
         return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
         This is for performance reason: for post-norm architecture, returning the input allows us
@@ -51,6 +51,14 @@ class Block(nn.Module):
             assert dropout_add_layer_norm is not None, 'dropout_add_ln is not installed'
             assert isinstance(self.norm1, nn.LayerNorm) and isinstance(self.dropout1, nn.Dropout)
 
+        # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
+        if sequence_parallel:
+            for p in self.norm1.parameters():
+                p._sequence_parallel = True
+            if hasattr(self, 'norm2'):
+                for p in self.norm2.parameters():
+                    p._sequence_parallel = True
+
     def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None,
                 mixer_kwargs=None):
         r"""Pass the input through the encoder layer.

+ 4 - 4
flash_attn/ops/fused_dense.py

@@ -27,15 +27,15 @@ class FusedDenseFunc(torch.autograd.Function):
         If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
         we do an all_gather_raw of x before doing the matmul.
         """
+        ctx.compute_weight_gradient = weight.requires_grad
+        ctx.return_residual = return_residual
+        ctx.process_group = process_group
+
         if torch.is_autocast_enabled():
             dtype = torch.get_autocast_gpu_dtype()
             x, weight = [a.to(dtype=dtype) for a in [x, weight]]
             bias = bias.to(dtype=dtype) if bias is not None else None
 
-        ctx.return_residual = return_residual
-        ctx.process_group = process_group
-        ctx.compute_weight_gradient = weight.requires_grad
-
         x = x.contiguous()
         weight = weight.contiguous()
         if ctx.compute_weight_gradient:

+ 186 - 0
tests/modules/test_block_parallel.py

@@ -0,0 +1,186 @@
+# Run test with:
+# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py
+
+import math
+from functools import partial
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import pytest
+
+from einops import rearrange
+
+from apex.transformer import parallel_state
+from apex.transformer import tensor_parallel
+
+from flash_attn.modules.mha import MHA, ParallelMHA
+from flash_attn.modules.mlp import FusedDenseGeluDense, ParallelFusedDenseGeluDense
+from flash_attn.modules.block import Block
+
+is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
+
+
+@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
+# @pytest.mark.parametrize('dtype', [torch.bfloat16])
+@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
+# @pytest.mark.parametrize('world_size', [2])
+@pytest.mark.parametrize('dim', [1024])
+def test_block_parallel(dim, world_size, dtype):
+    head_dim = 64
+    assert dim % head_dim == 0
+    num_heads = dim // head_dim
+    assert num_heads % world_size == 0
+    rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
+    if not torch.distributed.is_initialized():
+        torch.distributed.init_process_group(backend='nccl', init_method='env://')
+    device = f'cuda:{torch.distributed.get_rank()}'
+    assert world_size <= torch.distributed.get_world_size()
+    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
+    rank = parallel_state.get_tensor_model_parallel_rank()
+    # set seed
+    torch.random.manual_seed(0)
+    batch_size = 8
+    seqlen = 1024
+    assert (batch_size * seqlen) % world_size == 0
+    x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype,
+                       requires_grad=True)
+    residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
+    # We need to generate g here so that all processes get the same gradient,
+    # as rank 0 will have an extra bias that changes the RNG.
+    # If we don't divide by batch_size, the gradient gets a bit too large.
+    g = torch.randn_like(x_pt) / 32
+    x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
+    residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_()
+
+    mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2),
+                           use_flash_attn=True, device=device, dtype=dtype)
+    mlp_cls_pt = partial(FusedDenseGeluDense, hidden_features=4 * dim,
+                         device=device, dtype=dtype)
+    norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
+    model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
+    with torch.no_grad():
+        nn.init.normal_(model_pt.norm1.weight)
+        nn.init.normal_(model_pt.norm1.bias)
+        nn.init.normal_(model_pt.norm2.weight)
+        nn.init.normal_(model_pt.norm2.bias)
+
+    mixer_cls = partial(ParallelMHA, num_heads=num_heads,
+                        process_group=parallel_state.get_tensor_model_parallel_group(),
+                        rotary_emb_dim=int(head_dim // 2), use_flash_attn=True,
+                        device=device, dtype=dtype)
+    mlp_cls = partial(ParallelFusedDenseGeluDense, hidden_features=4 * dim,
+                      process_group=parallel_state.get_tensor_model_parallel_group(),
+                      device=device, dtype=dtype)
+    model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True,
+                  sequence_parallel=True)
+
+    partition_dim = dim // world_size
+    partition_hidden_dim = 4 * dim // world_size
+    with torch.no_grad():
+        model.mixer.Wqkv.weight.copy_(
+            rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
+                      'three o i -> (three o) i')
+        )
+        model.mixer.Wqkv.bias.copy_(
+            rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
+                      'three o -> (three o)')
+        )
+        model.mixer.out_proj.weight.copy_(
+            model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
+        )
+        if rank == 0:
+            model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
+        model.mlp.fc1.weight.copy_(
+            model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
+        )
+        model.mlp.fc1.bias.copy_(
+            model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
+        )
+        model.mlp.fc2.weight.copy_(
+            model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
+        )
+        if rank == 0:
+            model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
+        model.norm1.weight.copy_(model_pt.norm1.weight)
+        model.norm1.bias.copy_(model_pt.norm1.bias)
+        model.norm2.weight.copy_(model_pt.norm2.weight)
+        model.norm2.bias.copy_(model_pt.norm2.bias)
+
+    mixer_kwargs = {'seqlen': seqlen}
+    out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
+    out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen),
+                                       rearrange(residual_pt, '(b s) d -> b s d', s=seqlen))
+    out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]]
+    partition_batch_dim = batch_size * seqlen // world_size
+    assert torch.allclose(
+        out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
+        rtol=rtol, atol=atol
+    )
+    assert torch.allclose(
+        out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
+        rtol=rtol, atol=atol
+    )
+
+    out_pt.backward(g)
+    out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
+    # We want to iterate over parameters with _sequence_parallel=True in the same order,
+    # as different ranks might have different number of parameters (e.g., only rank 0 has bias).
+    params_seqparallel = {name: p for name, p in model.named_parameters()
+                          if getattr(p, '_sequence_parallel', False)}
+    for _, p in sorted(params_seqparallel.items()):
+        if getattr(p, '_sequence_parallel', False):
+            torch.distributed.all_reduce(p.grad, group=parallel_state.get_tensor_model_parallel_group())
+    parallel_state.destroy_model_parallel()
+
+    assert torch.allclose(
+        x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
+        rtol=rtol, atol=atol
+    )
+    assert torch.allclose(
+        residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
+        rtol=rtol, atol=atol
+    )
+    # The error for d_weight and d_bias is quite a bit higher
+    assert torch.allclose(
+        model.mixer.Wqkv.weight.grad,
+        rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
+                  'three o i -> (three o) i'),
+        rtol=rtol, atol=atol * 10
+    )
+    assert torch.allclose(
+        model.mixer.Wqkv.bias.grad,
+        rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
+                  'three o -> (three o)'),
+        rtol=rtol, atol=atol * 5
+    )
+    assert torch.allclose(
+        model.mixer.out_proj.weight.grad,
+        model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
+        rtol=rtol, atol=atol * 10
+    )
+    if rank == 0:
+        assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
+    assert torch.allclose(
+        model.mlp.fc1.weight.grad,
+        model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
+        rtol=rtol, atol=atol * 10
+    )
+    assert torch.allclose(
+        model.mlp.fc1.bias.grad,
+        model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
+        rtol=rtol, atol=atol * 5
+    )
+    assert torch.allclose(
+        model.mlp.fc2.weight.grad,
+        model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
+        rtol=rtol, atol=atol * 10
+    )
+    if rank == 0:
+        assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad,
+                              rtol=rtol, atol=atol * 5)
+
+    assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5)
+    assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
+    assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5)
+    assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)