|
@@ -0,0 +1,186 @@
|
|
|
+# Run test with:
|
|
|
+# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py
|
|
|
+
|
|
|
+import math
|
|
|
+from functools import partial
|
|
|
+
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import torch.nn.functional as F
|
|
|
+import pytest
|
|
|
+
|
|
|
+from einops import rearrange
|
|
|
+
|
|
|
+from apex.transformer import parallel_state
|
|
|
+from apex.transformer import tensor_parallel
|
|
|
+
|
|
|
+from flash_attn.modules.mha import MHA, ParallelMHA
|
|
|
+from flash_attn.modules.mlp import FusedDenseGeluDense, ParallelFusedDenseGeluDense
|
|
|
+from flash_attn.modules.block import Block
|
|
|
+
|
|
|
+is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
|
|
|
+# @pytest.mark.parametrize('dtype', [torch.bfloat16])
|
|
|
+@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
|
|
|
+# @pytest.mark.parametrize('world_size', [2])
|
|
|
+@pytest.mark.parametrize('dim', [1024])
|
|
|
+def test_block_parallel(dim, world_size, dtype):
|
|
|
+ head_dim = 64
|
|
|
+ assert dim % head_dim == 0
|
|
|
+ num_heads = dim // head_dim
|
|
|
+ assert num_heads % world_size == 0
|
|
|
+ rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
|
|
|
+ if not torch.distributed.is_initialized():
|
|
|
+ torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
|
|
+ device = f'cuda:{torch.distributed.get_rank()}'
|
|
|
+ assert world_size <= torch.distributed.get_world_size()
|
|
|
+ parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
|
|
+ rank = parallel_state.get_tensor_model_parallel_rank()
|
|
|
+ # set seed
|
|
|
+ torch.random.manual_seed(0)
|
|
|
+ batch_size = 8
|
|
|
+ seqlen = 1024
|
|
|
+ assert (batch_size * seqlen) % world_size == 0
|
|
|
+ x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype,
|
|
|
+ requires_grad=True)
|
|
|
+ residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
|
|
|
+ # We need to generate g here so that all processes get the same gradient,
|
|
|
+ # as rank 0 will have an extra bias that changes the RNG.
|
|
|
+ # If we don't divide by batch_size, the gradient gets a bit too large.
|
|
|
+ g = torch.randn_like(x_pt) / 32
|
|
|
+ x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
|
|
|
+ residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_()
|
|
|
+
|
|
|
+ mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2),
|
|
|
+ use_flash_attn=True, device=device, dtype=dtype)
|
|
|
+ mlp_cls_pt = partial(FusedDenseGeluDense, hidden_features=4 * dim,
|
|
|
+ device=device, dtype=dtype)
|
|
|
+ norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
|
|
|
+ model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
|
|
|
+ with torch.no_grad():
|
|
|
+ nn.init.normal_(model_pt.norm1.weight)
|
|
|
+ nn.init.normal_(model_pt.norm1.bias)
|
|
|
+ nn.init.normal_(model_pt.norm2.weight)
|
|
|
+ nn.init.normal_(model_pt.norm2.bias)
|
|
|
+
|
|
|
+ mixer_cls = partial(ParallelMHA, num_heads=num_heads,
|
|
|
+ process_group=parallel_state.get_tensor_model_parallel_group(),
|
|
|
+ rotary_emb_dim=int(head_dim // 2), use_flash_attn=True,
|
|
|
+ device=device, dtype=dtype)
|
|
|
+ mlp_cls = partial(ParallelFusedDenseGeluDense, hidden_features=4 * dim,
|
|
|
+ process_group=parallel_state.get_tensor_model_parallel_group(),
|
|
|
+ device=device, dtype=dtype)
|
|
|
+ model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True,
|
|
|
+ sequence_parallel=True)
|
|
|
+
|
|
|
+ partition_dim = dim // world_size
|
|
|
+ partition_hidden_dim = 4 * dim // world_size
|
|
|
+ with torch.no_grad():
|
|
|
+ model.mixer.Wqkv.weight.copy_(
|
|
|
+ rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
|
|
+ 'three o i -> (three o) i')
|
|
|
+ )
|
|
|
+ model.mixer.Wqkv.bias.copy_(
|
|
|
+ rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
|
|
+ 'three o -> (three o)')
|
|
|
+ )
|
|
|
+ model.mixer.out_proj.weight.copy_(
|
|
|
+ model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
|
|
|
+ )
|
|
|
+ if rank == 0:
|
|
|
+ model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
|
|
|
+ model.mlp.fc1.weight.copy_(
|
|
|
+ model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
|
|
+ )
|
|
|
+ model.mlp.fc1.bias.copy_(
|
|
|
+ model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
|
|
+ )
|
|
|
+ model.mlp.fc2.weight.copy_(
|
|
|
+ model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
|
|
|
+ )
|
|
|
+ if rank == 0:
|
|
|
+ model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
|
|
|
+ model.norm1.weight.copy_(model_pt.norm1.weight)
|
|
|
+ model.norm1.bias.copy_(model_pt.norm1.bias)
|
|
|
+ model.norm2.weight.copy_(model_pt.norm2.weight)
|
|
|
+ model.norm2.bias.copy_(model_pt.norm2.bias)
|
|
|
+
|
|
|
+ mixer_kwargs = {'seqlen': seqlen}
|
|
|
+ out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
|
|
|
+ out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen),
|
|
|
+ rearrange(residual_pt, '(b s) d -> b s d', s=seqlen))
|
|
|
+ out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]]
|
|
|
+ partition_batch_dim = batch_size * seqlen // world_size
|
|
|
+ assert torch.allclose(
|
|
|
+ out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
|
|
+ rtol=rtol, atol=atol
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
|
|
+ rtol=rtol, atol=atol
|
|
|
+ )
|
|
|
+
|
|
|
+ out_pt.backward(g)
|
|
|
+ out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
|
|
|
+ # We want to iterate over parameters with _sequence_parallel=True in the same order,
|
|
|
+ # as different ranks might have different number of parameters (e.g., only rank 0 has bias).
|
|
|
+ params_seqparallel = {name: p for name, p in model.named_parameters()
|
|
|
+ if getattr(p, '_sequence_parallel', False)}
|
|
|
+ for _, p in sorted(params_seqparallel.items()):
|
|
|
+ if getattr(p, '_sequence_parallel', False):
|
|
|
+ torch.distributed.all_reduce(p.grad, group=parallel_state.get_tensor_model_parallel_group())
|
|
|
+ parallel_state.destroy_model_parallel()
|
|
|
+
|
|
|
+ assert torch.allclose(
|
|
|
+ x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
|
|
+ rtol=rtol, atol=atol
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
|
|
|
+ rtol=rtol, atol=atol
|
|
|
+ )
|
|
|
+ # The error for d_weight and d_bias is quite a bit higher
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mixer.Wqkv.weight.grad,
|
|
|
+ rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
|
|
+ 'three o i -> (three o) i'),
|
|
|
+ rtol=rtol, atol=atol * 10
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mixer.Wqkv.bias.grad,
|
|
|
+ rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
|
|
|
+ 'three o -> (three o)'),
|
|
|
+ rtol=rtol, atol=atol * 5
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mixer.out_proj.weight.grad,
|
|
|
+ model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
|
|
|
+ rtol=rtol, atol=atol * 10
|
|
|
+ )
|
|
|
+ if rank == 0:
|
|
|
+ assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mlp.fc1.weight.grad,
|
|
|
+ model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
|
|
+ rtol=rtol, atol=atol * 10
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mlp.fc1.bias.grad,
|
|
|
+ model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
|
|
+ rtol=rtol, atol=atol * 5
|
|
|
+ )
|
|
|
+ assert torch.allclose(
|
|
|
+ model.mlp.fc2.weight.grad,
|
|
|
+ model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
|
|
|
+ rtol=rtol, atol=atol * 10
|
|
|
+ )
|
|
|
+ if rank == 0:
|
|
|
+ assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad,
|
|
|
+ rtol=rtol, atol=atol * 5)
|
|
|
+
|
|
|
+ assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5)
|
|
|
+ assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
|
|
|
+ assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5)
|
|
|
+ assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)
|