Browse Source

Add fused cross entropy loss

Tri Dao 2 năm trước cách đây
mục cha
commit
7c9953815a

+ 51 - 0
csrc/xentropy/interface.cpp

@@ -0,0 +1,51 @@
+#include <torch/extension.h>
+
+// CUDA forward declarations
+std::vector<at::Tensor> softmax_xentropy_cuda(
+    const at::Tensor &input,
+    const at::Tensor &labels,
+    const float smoothing);
+
+at::Tensor softmax_xentropy_backward_cuda(
+    const at::Tensor &grad_loss,
+    at::Tensor &logits,
+    const at::Tensor &max_log_sum_exp,
+    const at::Tensor &labels,
+    const float smoothing,
+    const bool inplace);
+
+// C++ interface
+
+#define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor")
+#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
+#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
+
+std::vector<at::Tensor> softmax_xentropy_forward(
+    const at::Tensor &input,
+    const at::Tensor &labels,
+    const float smoothing) {
+    CHECK_CUDA(input);
+    CHECK_INPUT(labels);
+
+    return softmax_xentropy_cuda(input, labels, smoothing);
+}
+
+at::Tensor softmax_xentropy_backward(
+    const at::Tensor &grad_loss,
+    at::Tensor &logits,
+    const at::Tensor &max_log_sum_exp,
+    const at::Tensor &labels,
+    const float smoothing,
+    const bool inplace)  {
+    CHECK_CUDA(grad_loss);
+    CHECK_CUDA(logits);
+    CHECK_INPUT(max_log_sum_exp);
+    CHECK_INPUT(labels);
+
+    return softmax_xentropy_backward_cuda(grad_loss, logits, max_log_sum_exp, labels, smoothing, inplace);
+}
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+    m.def("forward", &softmax_xentropy_forward, "Softmax cross entropy loss with label smoothing forward (CUDA)");
+    m.def("backward", &softmax_xentropy_backward, "Softmax cross entropy loss with label smoothing backward (CUDA)");
+}

+ 131 - 0
csrc/xentropy/setup.py

@@ -0,0 +1,131 @@
+# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
+import torch
+from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
+from setuptools import setup, find_packages
+import subprocess
+
+import sys
+import warnings
+import os
+
+# ninja build does not work unless include_dirs are abs path
+this_dir = os.path.dirname(os.path.abspath(__file__))
+
+
+def get_cuda_bare_metal_version(cuda_dir):
+    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
+    output = raw_output.split()
+    release_idx = output.index("release") + 1
+    release = output[release_idx].split(".")
+    bare_metal_major = release[0]
+    bare_metal_minor = release[1][0]
+
+    return raw_output, bare_metal_major, bare_metal_minor
+
+
+def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
+    raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
+    torch_binary_major = torch.version.cuda.split(".")[0]
+    torch_binary_minor = torch.version.cuda.split(".")[1]
+
+    print("\nCompiling cuda extensions with")
+    print(raw_output + "from " + cuda_dir + "/bin\n")
+
+    if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
+        raise RuntimeError(
+            "Cuda extensions are being compiled with a version of Cuda that does "
+            "not match the version used to compile Pytorch binaries.  "
+            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+            + "In some cases, a minor-version mismatch will not cause later errors:  "
+            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
+            "You can try commenting out this check (at your own risk)."
+        )
+
+
+def raise_if_cuda_home_none(global_option: str) -> None:
+    if CUDA_HOME is not None:
+        return
+    raise RuntimeError(
+        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
+        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
+        "only images whose names contain 'devel' will provide nvcc."
+    )
+
+
+def append_nvcc_threads(nvcc_extra_args):
+    _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
+    if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
+        return nvcc_extra_args + ["--threads", "4"]
+    return nvcc_extra_args
+
+
+if not torch.cuda.is_available():
+    # https://github.com/NVIDIA/apex/issues/486
+    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
+    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
+    print(
+        "\nWarning: Torch did not find available GPUs on this system.\n",
+        "If your intention is to cross-compile, this is not an error.\n"
+        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
+        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
+        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
+        "If you wish to cross-compile for a single specific architecture,\n"
+        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
+    )
+    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
+        _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
+        if int(bare_metal_major) == 11:
+            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
+            if int(bare_metal_minor) > 0:
+                os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
+        else:
+            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
+
+print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
+TORCH_MAJOR = int(torch.__version__.split(".")[0])
+TORCH_MINOR = int(torch.__version__.split(".")[1])
+
+cmdclass = {}
+ext_modules = []
+
+# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
+# See https://github.com/pytorch/pytorch/pull/70650
+generator_flag = []
+torch_dir = torch.__path__[0]
+if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
+    generator_flag = ["-DOLD_GENERATOR_PATH"]
+
+raise_if_cuda_home_none("--xentropy")
+# Check, if CUDA11 is installed for compute capability 8.0
+cc_flag = []
+cc_flag.append("-gencode")
+cc_flag.append("arch=compute_70,code=sm_70")
+cc_flag.append("-gencode")
+cc_flag.append("arch=compute_80,code=sm_80")
+
+ext_modules.append(
+    CUDAExtension(
+        name="xentropy_cuda_lib",
+        sources=[
+            "interface.cpp",
+            "xentropy_kernel.cu"
+        ],
+        extra_compile_args={
+            "cxx": ["-O3"] + generator_flag,
+            "nvcc": append_nvcc_threads(
+                ["-O3"]
+                + generator_flag
+                + cc_flag
+            ),
+        },
+        include_dirs=[this_dir],
+    )
+)
+
+setup(
+    name="xentropy_cuda_lib",
+    version="0.1",
+    description="Cross-entropy loss",
+    ext_modules=ext_modules,
+    cmdclass={"build_ext": BuildExtension} if ext_modules else {},
+)

+ 754 - 0
csrc/xentropy/xentropy_kernel.cu

@@ -0,0 +1,754 @@
+// Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/csrc/xentropy/xentropy_kernel.cu
+// TD [2022-09-17]: We make it work for bfloat16, and add an option to do the backward inplace (to save memory).
+/**
+ * From PyTorch:
+ *
+ * Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
+ * Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
+ * Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
+ * Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
+ * Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
+ * Copyright (c) 2011-2013 NYU                      (Clement Farabet)
+ * Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
+ * Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
+ * Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
+ *
+ * From Caffe2:
+ *
+ * Copyright (c) 2016-present, Facebook Inc. All rights reserved.
+ *
+ * All contributions by Facebook:
+ * Copyright (c) 2016 Facebook Inc.
+ *
+ * All contributions by Google:
+ * Copyright (c) 2015 Google Inc.
+ * All rights reserved.
+ *
+ * All contributions by Yangqing Jia:
+ * Copyright (c) 2015 Yangqing Jia
+ * All rights reserved.
+ *
+ * All contributions from Caffe:
+ * Copyright(c) 2013, 2014, 2015, the respective contributors
+ * All rights reserved.
+ *
+ * All other contributions:
+ * Copyright(c) 2015, 2016 the respective contributors
+ * All rights reserved.
+ *
+ * Caffe2 uses a copyright model similar to Caffe: each contributor holds
+ * copyright over their contributions to Caffe2. The project versioning records
+ * all such contribution and copyright details. If a contributor wants to further
+ * mark their specific copyright on a particular contribution, they should
+ * indicate their copyright solely in the commit message of the change when it is
+ * committed.
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
+ *    and IDIAP Research Institute nor the names of its contributors may be
+ *    used to endorse or promote products derived from this software without
+ *    specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+#include <ATen/ATen.h>
+#include <ATen/cuda/CUDAContext.h>
+#include <c10/cuda/CUDAGuard.h>
+
+#include <ATen/AccumulateType.h>
+#include <ATen/cuda/NumericLimits.cuh>
+
+// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
+// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
+#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
+  switch(TYPE) \
+  { \
+    case at::ScalarType::Float: \
+    { \
+      using scalar_t_##LEVEL = float; \
+      __VA_ARGS__; \
+      break; \
+    } \
+    case at::ScalarType::Half: \
+    { \
+      using scalar_t_##LEVEL = at::Half; \
+      __VA_ARGS__; \
+      break; \
+    } \
+    case at::ScalarType::BFloat16: \
+    { \
+      using scalar_t_##LEVEL = at::BFloat16; \
+      __VA_ARGS__; \
+      break; \
+    } \
+    default: \
+      AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'");  \
+  }
+// #else
+// #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, LEVEL, NAME, ...) \
+//   switch(TYPE) \
+//   { \
+//     case at::ScalarType::Float: \
+//     { \
+//       using scalar_t_##LEVEL = float; \
+//       __VA_ARGS__; \
+//       break; \
+//     } \
+//     case at::ScalarType::Half: \
+//     { \
+//       using scalar_t_##LEVEL = at::Half; \
+//       __VA_ARGS__; \
+//       break; \
+//     } \
+//     default: \
+//       AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'");  \
+//   }
+// #endif
+
+#define ALIGN_BYTES 16
+
+using Tensor = at::Tensor;
+using TensorList = at::TensorList;
+using ScalarType = at::ScalarType;
+using at::acc_type;
+
+template<typename T, typename AccumT, typename OutT>
+struct LogSoftMaxForwardEpilogue {
+  __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_input, AccumT sum)
+    : logsum(max_input + std::log(sum)) {}
+
+  __device__ __forceinline__ LogSoftMaxForwardEpilogue(AccumT max_log_sum_exp)
+    : logsum(max_log_sum_exp) {}
+
+  __device__ __forceinline__ OutT operator()(T input) const {
+    return static_cast<OutT>(input - logsum);
+  }
+
+  const AccumT logsum;
+};
+
+template<typename T, typename AccumT, typename OutT>
+struct LogSoftMaxBackwardEpilogue {
+  __device__ __forceinline__ LogSoftMaxBackwardEpilogue(AccumT sum)
+    : sum(sum) {}
+
+  __device__ __forceinline__ T operator()(OutT gradOutput, OutT output) const {
+    return static_cast<T>(gradOutput - std::exp(static_cast<AccumT>(output)) * sum);
+  }
+
+  const AccumT sum;
+};
+
+
+
+const int max_threads = 1024;
+
+inline dim3 SoftMax_getBlockSize(int ILP, uint64_t dim_size) {
+  uint64_t block_size = 1;
+  uint64_t max_block_size = std::min(dim_size / ILP, static_cast<uint64_t>(max_threads));
+  while (block_size < (max_block_size/2)) block_size *= 2;
+  // Launch at least a single warp - the kernel assumes that.
+  block_size = std::max(block_size, static_cast<uint64_t>(32));
+  return dim3(block_size);
+}
+
+template<typename T>
+struct Add {
+  __device__ __forceinline__ T operator()(T a, T b) const {
+    return a + b;
+  }
+};
+
+template<typename T>
+struct Max {
+  __device__ __forceinline__ T operator()(T a, T b) const {
+    return a < b ? b : a;
+  }
+};
+
+
+////////////////////////////////////////////////////////////////////////////////
+// Regular kernel (fast when dim_size is large; requires inner_size == 1)
+////////////////////////////////////////////////////////////////////////////////
+
+
+template <typename T, typename AccumT>
+struct MaxFloat
+{
+  __device__ __forceinline__ AccumT operator()(AccumT max, T v) const {
+    return ::max(max, (AccumT)v);
+  }
+};
+
+template<typename T, typename AccumT>
+struct AddFloat
+{
+  __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
+    return sum + v;
+  }
+};
+
+template<typename T, typename AccumT>
+struct SumExpFloat
+{
+  __device__ __forceinline__ SumExpFloat(AccumT v)
+    : max_k(v) {}
+
+  __device__ __forceinline__ AccumT operator()(AccumT sum, T v) const {
+    return sum + std::exp(v - max_k);
+  }
+
+  const AccumT max_k;
+};
+
+template <template<typename> class Reduction, typename AccumT>
+__device__ __forceinline__ AccumT
+blockReduce(AccumT* smem, AccumT val,
+            const Reduction<AccumT>& r,
+            AccumT defaultVal)
+{
+  // To avoid RaW races from chaining blockReduce calls together, we need a sync here
+  __syncthreads();
+
+  smem[threadIdx.x] = val;
+
+  __syncthreads();
+
+  AccumT warpVal = defaultVal;
+
+  // First warp will perform per-warp reductions for the remaining warps
+  uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
+  if (threadIdx.x < 32) {
+    int lane = threadIdx.x % 32;
+    if (lane < blockDim.x / 32) {
+#pragma unroll
+      for (int i = 0; i < 32; ++i) {
+        warpVal = r(warpVal, smem[lane * 32 + i]);
+      }
+      __syncwarp(mask);
+      smem[lane] = warpVal;
+    }
+  }
+
+  __syncthreads();
+
+  // First thread will perform a reduction of the above per-warp reductions
+  AccumT blockVal = defaultVal;
+
+  if (threadIdx.x == 0) {
+    for (int i = 0; i < blockDim.x / 32; ++i) {
+      blockVal = r(blockVal, smem[i]);
+    }
+    smem[0] = blockVal;
+  }
+
+  // Sync and broadcast
+  __syncthreads();
+  return smem[0];
+}
+
+template <template<typename> class Reduction1, template<typename> class Reduction2, typename AccumT>
+__device__ __forceinline__ void
+blockReduce(AccumT* smem,
+            AccumT* reducVal1,
+            AccumT val1,
+            const Reduction1<AccumT>& r1,
+            AccumT defaultVal1,
+            AccumT* reducVal2,
+            AccumT val2,
+            const Reduction2<AccumT>& r2,
+            AccumT defaultVal2)
+{
+  // To avoid RaW races from chaining blockReduce calls together, we need a sync here
+  __syncthreads();
+
+  smem[threadIdx.x] = val1;
+  smem[blockDim.x + threadIdx.x] = val2;
+
+  __syncthreads();
+
+  AccumT warpVal1 = defaultVal1;
+  AccumT warpVal2 = defaultVal2;
+
+  // First warp will perform per-warp reductions for the remaining warps
+  uint32_t mask = (((uint64_t)1) << (blockDim.x / 32)) - 1;
+  if (threadIdx.x < 32) {
+    int lane = threadIdx.x % 32;
+    if (lane < blockDim.x / 32) {
+#pragma unroll
+      for (int i = 0; i < 32; ++i) {
+        warpVal1 = r1(warpVal1, smem[lane * 32 + i]);
+        warpVal2 = r2(warpVal2, smem[lane * 32 + i + blockDim.x]);
+      }
+      __syncwarp(mask);
+      smem[lane] = warpVal1;
+      smem[lane + blockDim.x] = warpVal2;
+    }
+  }
+
+  __syncthreads();
+
+  // First thread will perform a reduction of the above per-warp reductions
+  AccumT blockVal1 = defaultVal1;
+  AccumT blockVal2 = defaultVal2;
+
+  if (threadIdx.x == 0) {
+    for (int i = 0; i < blockDim.x / 32; ++i) {
+      blockVal1 = r1(blockVal1, smem[i]);
+      blockVal2 = r2(blockVal2, smem[i + blockDim.x]);
+    }
+    smem[0] = blockVal1;
+    smem[blockDim.x] = blockVal2;
+  }
+
+  // Sync and broadcast
+  __syncthreads();
+  *reducVal1 = smem[0];
+  *reducVal2 = smem[blockDim.x];
+  __syncthreads();
+}
+
+template <template<typename, typename> class Reduction, int ILP, typename T, typename AccumT>
+__device__ __forceinline__ AccumT
+ilpReduce(int shift,
+          T* data,
+          int size,
+          const Reduction<T, AccumT>& r,
+          AccumT defaultVal)
+{
+  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;
+  AccumT threadVal = defaultVal;
+  int offset = threadIdx.x;
+
+  // shift and do 1
+  if(shift > 0){
+    data -= shift;
+    size += shift;
+    if(threadIdx.x >= shift){
+      threadVal = r(threadVal, data[offset]);
+    }
+    size -= blockDim.x;
+    data += blockDim.x;
+  }
+  int last = size % (ILP * blockDim.x);
+
+  T v[ILP];
+  LoadT* value = reinterpret_cast<LoadT*>(&v);
+
+  for (; offset * ILP < (size - last); offset += blockDim.x) {
+    *value = reinterpret_cast<LoadT*>(data)[offset];
+
+    for (int j = 0; j < ILP; ++j) {
+      threadVal = r(threadVal, v[j]);
+    }
+  }
+
+  offset = size - last + threadIdx.x;
+  // Epilogue
+  for (; offset < size; offset += blockDim.x)
+    threadVal = r(threadVal, data[offset]);
+
+  return threadVal;
+}
+
+template <template<typename, typename> class Reduction1, template<typename, typename> class Reduction2, int ILP, typename T, typename AccumT>
+__device__ __forceinline__ void
+ilpReduce(int shift,
+          T* data,
+          int size,
+          AccumT* reducVal1,
+          const Reduction1<T, AccumT>& r1,
+          AccumT defaultVal1,
+          AccumT* reducVal2,
+          const Reduction2<T, AccumT>& r2,
+          AccumT defaultVal2)
+{
+  typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LoadT;
+
+  AccumT threadVal1 = defaultVal1;
+  AccumT threadVal2 = defaultVal2;
+  int offset = threadIdx.x;
+
+  // shift and do 1
+  if(shift > 0){
+    data -= shift;
+    size += shift;
+    if(threadIdx.x >= shift){
+      threadVal1 = r1(threadVal1, data[offset]);
+      threadVal2 = r2(threadVal2, data[offset]);
+    }
+    size -= blockDim.x;
+    data += blockDim.x;
+  }
+  int last = size % (ILP * blockDim.x);
+
+  T v[ILP];
+  LoadT* value = reinterpret_cast<LoadT*>(&v);
+
+  for (; offset * ILP < (size - last); offset += blockDim.x) {
+    *value = reinterpret_cast<LoadT*>(data)[offset];
+
+    for (int j = 0; j < ILP; ++j) {
+      threadVal1 = r1(threadVal1, v[j]);
+      threadVal2 = r2(threadVal2, v[j]);
+    }
+  }
+
+  offset = size - last + threadIdx.x;
+  // Epilogue
+  for (; offset < size; offset += blockDim.x) {
+    threadVal1 = r1(threadVal1, data[offset]);
+    threadVal2 = r2(threadVal2, data[offset]);
+  }
+
+  *reducVal1 = threadVal1;
+  *reducVal2 = threadVal2;
+}
+
+template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template <typename, typename, typename> class Epilogue>
+__global__ void
+cunn_SoftMaxXEntropyForward(
+    accscalar_t *losses,
+    outscalar_t *max_log_sum_exp,
+    scalar_t *input,
+    int64_t *labels,
+    int64_t classes,
+    const float smoothing)
+{
+  extern __shared__ unsigned char smem[];
+  auto sdata = reinterpret_cast<accscalar_t*>(smem);
+  // forward pointers to batch[blockIdx.x]
+  // each block handles a sample in the mini-batch
+  input += blockIdx.x * classes;
+  //output += blockIdx.x * classes;
+  const int shift = ((uint64_t)input) % ALIGN_BYTES / sizeof(scalar_t);
+
+  int64_t label = labels[blockIdx.x];
+
+  // find the max and sum
+  accscalar_t threadMax, threadSum, max_k, sum_k;
+  ilpReduce<MaxFloat, AddFloat, ILP, scalar_t, accscalar_t>(
+    shift, input, classes,
+    &threadMax, MaxFloat<scalar_t, accscalar_t>(),
+    -at::numeric_limits<accscalar_t>::max(),
+    &threadSum, AddFloat<scalar_t, accscalar_t>(),
+    static_cast<accscalar_t>(0));
+
+  blockReduce<Max, Add, accscalar_t>(
+      sdata,
+      &max_k, threadMax, Max<accscalar_t>(),
+      -at::numeric_limits<accscalar_t>::max(),
+      &sum_k, threadSum, Add<accscalar_t>(),
+      static_cast<accscalar_t>(0));
+
+  accscalar_t threadExp = ilpReduce<SumExpFloat, ILP, scalar_t, accscalar_t>(shift, input, classes, SumExpFloat<scalar_t, accscalar_t>(max_k), static_cast<accscalar_t>(0));
+  accscalar_t sumAll = blockReduce<Add, accscalar_t>(
+      sdata, threadExp, Add<accscalar_t>(), static_cast<accscalar_t>(0));
+
+  Epilogue<scalar_t, accscalar_t, outscalar_t> epilogue(max_k, sumAll);
+
+  // calculate per element loss with label smoothing
+  // reserve max + log_sum_exp for bprop
+  if (threadIdx.x == 0) {
+    accscalar_t lse = max_k + std::log(sumAll);
+    if ((label >= 0) && (label < classes)) {
+      accscalar_t log_prob = epilogue(static_cast<accscalar_t>(input[label]));
+      losses[blockIdx.x] = (lse - sum_k / classes) * smoothing - log_prob * (1 - smoothing);
+    } else {
+      losses[blockIdx.x] = outscalar_t(0.f);
+    }
+    max_log_sum_exp[blockIdx.x] = lse;
+  }
+}
+
+template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
+__device__ __forceinline__ void
+apply(scalar_t *gradInput,
+      scalar_t *logits,
+      outscalar_t *max_log_sum_exp,
+      outscalar_t *gradOutput,
+      int64_t *labels,
+      const float smoothing,
+      int classes)
+{
+  accscalar_t smooth_positives = 1.0 - smoothing;
+  accscalar_t smooth_negatives = smoothing / classes;
+  accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
+  int64_t label = labels[blockIdx.x];
+  accscalar_t coeff = max_log_sum_exp[blockIdx.x];
+
+  int offset = threadIdx.x;
+  int last = classes % (ILP * blockDim.x);
+
+  for (; offset < classes - last; offset += blockDim.x * ILP) {
+    accscalar_t tmpLogits[ILP];
+
+#pragma unroll
+    for (int j = 0; j < ILP; ++j) {
+      tmpLogits[j] = static_cast<accscalar_t>(logits[offset + j * blockDim.x]);
+    }
+
+#pragma unroll
+    for (int j = 0; j < ILP; ++j)
+      gradInput[offset + j * blockDim.x] = tmpGradOutput * (
+        std::exp(tmpLogits[j] - coeff) - static_cast<accscalar_t>(
+          (offset + j * blockDim.x == label) ? 1 : 0) *
+        smooth_positives - smooth_negatives);
+  }
+
+  for (; offset < classes; offset += blockDim.x)
+    gradInput[offset] = tmpGradOutput * (std::exp(
+        static_cast<accscalar_t>(logits[offset]) - coeff) -
+        static_cast<accscalar_t>((offset == label) ? 1 : 0) *
+        smooth_positives - smooth_negatives);
+}
+
+
+template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t>
+__device__ __forceinline__ void
+aligned_apply(int shift,
+              scalar_t *gradInput,
+              scalar_t *logits,
+              outscalar_t *max_log_sum_exp,
+              outscalar_t *gradOutput,
+              int64_t *labels,
+              const float smoothing,
+              int classes)
+{
+  accscalar_t smooth_positives = 1.0 - smoothing;
+  accscalar_t smooth_negatives = smoothing / classes;
+  accscalar_t tmpGradOutput = gradOutput[blockIdx.x];
+  int64_t label = labels[blockIdx.x];
+  accscalar_t coeff = max_log_sum_exp[blockIdx.x];
+
+  int offset = threadIdx.x;
+
+  // shift and do 1
+  if(shift > 0){
+    logits -= shift;
+    gradInput -= shift;
+    classes += shift;
+    if(threadIdx.x >= shift){
+      gradInput[offset] = tmpGradOutput * (std::exp(
+        static_cast<accscalar_t>(logits[offset]) - coeff) -
+        static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
+        smooth_positives - smooth_negatives);
+    }
+    classes -= blockDim.x;
+    gradInput += blockDim.x;
+    logits += blockDim.x;
+    shift -= blockDim.x;
+  }
+
+  int last = classes % (ILP * blockDim.x);
+
+  typedef typename std::aligned_storage<ILP*sizeof(scalar_t), ILP*alignof(scalar_t)>::type LoadT;
+  // input
+  scalar_t v[ILP];
+  LoadT* value = reinterpret_cast<LoadT*>(&v);
+  // output
+  scalar_t r[ILP];
+  LoadT* result = reinterpret_cast<LoadT*>(&r);
+
+  for (; offset * ILP < (classes - last); offset += blockDim.x) {
+    *value = reinterpret_cast<LoadT*>(logits)[offset];
+
+#pragma unroll
+    for (int j = 0; j < ILP; ++j) {
+      r[j] = tmpGradOutput * (std::exp(
+          static_cast<accscalar_t>(v[j]) - coeff) -
+          static_cast<accscalar_t>(((ILP * offset + j - shift) == label) ? 1 : 0) *
+          smooth_positives - smooth_negatives);
+    }
+    reinterpret_cast<LoadT*>(gradInput)[offset] = *result;
+  }
+
+  offset = classes - last + threadIdx.x;
+  for (; offset < classes; offset += blockDim.x)
+    gradInput[offset] = tmpGradOutput * (std::exp(
+        static_cast<accscalar_t>(logits[offset]) - coeff) -
+        static_cast<accscalar_t>(((offset - shift) == label) ? 1 : 0) *
+        smooth_positives - smooth_negatives);
+
+}
+
+template <int ILP, typename scalar_t, typename accscalar_t, typename outscalar_t, template<typename, typename, typename> class Epilogue>
+__global__ void
+cunn_SoftMaxXEntropyBackward(
+    scalar_t *gradInput,
+    scalar_t *logits,
+    outscalar_t *max_log_sum_exp,
+    outscalar_t *gradOutput,
+    int64_t *labels,
+    const float smoothing,
+    int classes)
+{
+  gradInput += blockIdx.x * classes;
+  logits += blockIdx.x * classes;
+
+  // Do vectorized load/store when input/output have same alignment
+  const int shift = ((uint64_t)logits) % ALIGN_BYTES / sizeof(scalar_t);
+  const int shift_ = ((uint64_t)gradInput) % ALIGN_BYTES / sizeof(scalar_t);
+  if (shift == shift_){
+    aligned_apply<ILP, scalar_t, accscalar_t, outscalar_t>(shift, gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes);
+  }
+  else {
+    apply<ILP, scalar_t, accscalar_t, outscalar_t>(gradInput, logits, max_log_sum_exp, gradOutput, labels, smoothing, classes);
+  }
+
+}
+
+template<template<typename, typename, typename> class Epilogue>
+std::vector<Tensor> host_softmax_xentropy(
+        const Tensor & input_,
+        const Tensor & labels_,
+        const float smoothing){
+  AT_ASSERTM(labels_.scalar_type() == ScalarType::Long,"Label type should be CUDA Long");
+
+  // Otherwise the kernel will be launched from cuda:0 device
+  // Cast to char to avoid compiler warning about narrowing
+  at::cuda::CUDAGuard device_guard{(char)input_.get_device()};
+
+  auto input = input_.contiguous();
+  Tensor max_log_sum_exp = at::empty_like(labels_, input.options().dtype(ScalarType::Float));
+  Tensor losses = at::empty_like(labels_, input_.options().dtype(ScalarType::Float));
+
+  static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
+    std::is_same<acc_type<at::Half, true>, double>::value,
+    "accscalar_t for half should be float or double");
+  AT_ASSERTM(input.dim() == 2, "Currently only 2 dim input supported");
+  AT_ASSERTM(labels_.dim() == 1, "Labels should be 1 dimensional");
+  AT_ASSERTM(input.size(0) == labels_.size(0), "Input and label should have same number of examples");
+  AT_ASSERTM(input.numel() > 0, "Number of classes in input should not be 0");
+
+  const int64_t dim = 1;
+  int64_t outer_size = 1;
+  int64_t dim_size = input.size(dim);
+  int64_t inner_size = 1;
+  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+  for (int64_t i = 0; i < dim; ++i)
+    outer_size *= input.size(i);
+  for (int64_t i = dim + 1; i < input.dim(); ++i)
+    inner_size *= input.size(i);
+  // This kernel spawns a block per each element in the batch.
+  // XXX: it assumes that inner_size == 1
+  TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");
+
+  dim3 grid(outer_size);
+
+  using namespace at;
+  DISPATCH_FLOAT_AND_HALF_AND_BF16(input.scalar_type(), 0, "host_softmax_xentropy",
+    using accscalar_t = at::acc_type<scalar_t_0, true>;
+    const int ILP = sizeof(float4)/sizeof(scalar_t_0);
+    dim3 block = SoftMax_getBlockSize(ILP, dim_size);
+    cunn_SoftMaxXEntropyForward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
+      <<<grid, block, 2 * block.x * sizeof(accscalar_t), stream>>>(
+        losses.data_ptr<accscalar_t>(), max_log_sum_exp.data_ptr<accscalar_t>(),
+        input.data_ptr<scalar_t_0>(), labels_.data_ptr<int64_t>(),
+        dim_size, smoothing
+    );
+  );
+
+  C10_CUDA_CHECK(cudaGetLastError());
+
+  std::vector<at::Tensor> ret = {losses, max_log_sum_exp};
+  return ret;
+}
+
+template<template<typename, typename, typename> class Epilogue>
+Tensor host_softmax_xentropy_backward(
+    const at::Tensor &grad_loss,
+    at::Tensor &logits_,
+    const at::Tensor &max_log_sum_exp,
+    const at::Tensor &labels,
+    const float smoothing,
+    bool inplace) {
+  // Otherwise the kernel will be launched from cuda:0 device
+  // Cast to char to avoid compiler warning about narrowing
+  at::cuda::CUDAGuard device_guard{(char)grad_loss.get_device()};
+
+  const int64_t dim = 1;
+  Tensor gI = inplace ? logits_ : at::empty_like(logits_);
+  if (grad_loss.numel() == 0) {
+    return gI;
+  }
+
+  auto grad = grad_loss.contiguous();
+  auto logits = logits_.contiguous();
+
+  static_assert(std::is_same<acc_type<at::Half, true>, float>::value ||
+    std::is_same<acc_type<at::Half, true>, double>::value,
+    "accscalar_t for half should be float or double");
+  if (grad.dim() == 0) grad = grad.view(1);
+
+  AT_ASSERTM(logits_.dim() == 2, "Currently only 2 dim input supported");
+  AT_ASSERTM(labels.dim() == 1, "Labels should be 1 dimensional");
+  AT_ASSERTM(logits_.numel() > 0, "Number of classes in input should not be 0");
+  AT_ASSERTM(logits_.size(0) == labels.size(0), "Input and label should have same number of examples");
+  AT_ASSERTM(labels.size(0) == grad.size(0), "Label and loss should have same number of examples");
+
+  int64_t outer_size = 1;
+  int64_t dim_size = logits.size(dim);
+  int64_t inner_size = 1;
+  for (int64_t i = 0; i < dim; ++i)
+    outer_size *= logits.size(i);
+  for (int64_t i = dim + 1; i < logits.dim(); ++i)
+    inner_size *= logits.size(i);
+  // See descriptions of kernels above.
+  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+  TORCH_CHECK(inner_size == 1, "Currently only inner size 1 supported");
+
+  dim3 grid(outer_size);
+
+  DISPATCH_FLOAT_AND_HALF_AND_BF16(gI.scalar_type(), 0, "host_softmax_xentropy_backward",
+    using accscalar_t = acc_type<scalar_t_0, true>;
+    const int ILP = sizeof(float4)/sizeof(scalar_t_0);
+    dim3 block = SoftMax_getBlockSize(ILP, dim_size);
+    cunn_SoftMaxXEntropyBackward<ILP, scalar_t_0, accscalar_t, accscalar_t, Epilogue>
+      <<<grid, block, block.x * sizeof(accscalar_t), stream>>>(
+        gI.data_ptr<scalar_t_0>(), logits.data_ptr<scalar_t_0>(),
+        max_log_sum_exp.data_ptr<accscalar_t>(),
+        grad.data_ptr<accscalar_t>(), labels.data_ptr<int64_t>(),
+        smoothing, dim_size
+    );
+  );
+
+  C10_CUDA_CHECK(cudaGetLastError());
+  return gI;
+}
+
+std::vector<Tensor> softmax_xentropy_cuda(const Tensor &input, const Tensor &labels, const float smoothing){
+  return host_softmax_xentropy<LogSoftMaxForwardEpilogue>(input, labels, smoothing);
+}
+
+at::Tensor softmax_xentropy_backward_cuda(
+    const at::Tensor &grad_loss,
+    at::Tensor &logits,
+    const at::Tensor &max_log_sum_exp,
+    const at::Tensor &labels,
+    const float smoothing,
+    const bool inplace) {
+  AT_ASSERTM((grad_loss.scalar_type() == ScalarType::Float), "expected grad types to be at::Float");
+  return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, smoothing, inplace);
+}

+ 51 - 0
flash_attn/losses/cross_entropy_apex.py

@@ -0,0 +1,51 @@
+import torch
+import torch.nn as nn
+
+import xentropy_cuda_lib
+
+
+# https://github.com/NVIDIA/apex/blob/master/apex/contrib/xentropy/softmax_xentropy.py
+class SoftmaxCrossEntropyLossFn(torch.autograd.Function):
+    @staticmethod
+    def forward(ctx, logits, labels, smoothing=0.0, padding_idx=0, inplace_backward=False):
+        losses, max_log_sum_exp = xentropy_cuda_lib.forward(
+            logits, labels, smoothing)
+        losses.masked_fill_(labels==padding_idx, 0)
+        ctx.save_for_backward(logits, max_log_sum_exp, labels)
+        ctx.smoothing = smoothing
+        ctx.padding_idx = padding_idx
+        ctx.inplace_backward = inplace_backward
+        return losses
+
+    @staticmethod
+    def backward(ctx, grad_loss):
+        logits, max_log_sum_exp, labels = ctx.saved_tensors
+        if not grad_loss.is_contiguous():
+            grad_loss = grad_loss.contiguous()
+        grad_loss.masked_fill_(labels==ctx.padding_idx, 0)
+        grad_logits = xentropy_cuda_lib.backward(grad_loss, logits, max_log_sum_exp, labels,
+                                                 ctx.smoothing, ctx.inplace_backward)
+        return grad_logits, None, None, None, None
+
+
+class CrossEntropyLossApex(nn.Module):
+
+    def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0,
+                 inplace_backward=False):
+        super().__init__()
+        if reduction not in ['mean', 'none']:
+            raise NotImplementedError("Only support reduction = 'mean' or 'none'")
+        self.ignore_index = ignore_index
+        self.reduction = reduction
+        self.label_smoothing = label_smoothing
+        self.inplace_backward = inplace_backward
+
+    def forward(self, input, target):
+        assert input.is_cuda and target.is_cuda
+        # SoftmaxCrossEntropyLoss implicitly casts to float
+        loss = SoftmaxCrossEntropyLossFn.apply(input, target, self.label_smoothing,
+                                               self.ignore_index, self.inplace_backward)
+        if self.reduction == 'mean':
+            return loss.sum() / (target != self.ignore_index).sum()
+        else:
+            return loss

+ 112 - 0
flash_attn/losses/cross_entropy_parallel.py

@@ -0,0 +1,112 @@
+# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/cross_entropy.py
+# But we make it much faster: we compute the local loss and the LSE, and by exchanging the LSE and
+# the losses we can get the global loss. There's no need to do it step by step
+# (compute local max, exchange, compute exp, compute local sum, exchange, etc.)
+import torch
+import torch.nn as nn
+
+import xentropy_cuda_lib
+
+from apex.transformer.parallel_state import get_tensor_model_parallel_group
+from apex.transformer.parallel_state import get_tensor_model_parallel_rank
+from apex.transformer.parallel_state import get_tensor_model_parallel_world_size
+from apex.transformer.tensor_parallel.utils import VocabUtility
+
+# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
+# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
+# version of PyTorch. The following 4 lines are for backward comparability with
+# older PyTorch.
+if "all_gather_into_tensor" not in dir(torch.distributed):
+    torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
+if "reduce_scatter_tensor" not in dir(torch.distributed):
+    torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base
+
+
+class SoftmaxCrossEntropyLossParallelFn(torch.autograd.Function):
+
+    @staticmethod
+    def forward(ctx, logits_parallel, labels, smoothing=0.0, ignored_index=-100,
+                inplace_backward=False):
+        """
+        logits_parallel: (batch, vocab_size / world_size)
+        labels: (batch,)
+        """
+        assert smoothing == 0.0, 'smoothing != 0.0 is not yet implemented, file an issue if you need it'
+        batch, partition_vocab_size = logits_parallel.shape
+        assert labels.shape == (batch,)
+        rank = get_tensor_model_parallel_rank()
+        world_size = get_tensor_model_parallel_world_size()
+        vocab_start_index, vocab_end_index = VocabUtility.vocab_range_from_per_partition_vocab_size(
+            partition_vocab_size, get_tensor_model_parallel_rank(),
+            get_tensor_model_parallel_world_size()
+        )
+
+        # Create a mask of valid vocab ids (1 means it needs to be masked).
+        labels_mask = (labels < vocab_start_index) | (labels >= vocab_end_index)
+        ignored_mask = labels == ignored_index
+        labels_local = torch.where(ignored_mask, labels, labels - vocab_start_index)
+        masked_labels = labels_local.clone()
+        masked_labels[labels_mask] = ignored_index
+
+        losses, lse_local = xentropy_cuda_lib.forward(logits_parallel, masked_labels, smoothing)
+        assert lse_local.shape == (batch,)
+        assert losses.shape == (batch,)
+        losses.masked_fill_(masked_labels==ignored_index, 0)
+
+        if world_size > 1:
+            lse_allgather = torch.empty(world_size, batch, dtype=lse_local.dtype,
+                                        device=lse_local.device)
+            torch.distributed.all_gather_into_tensor(lse_allgather, lse_local.contiguous(),
+                                                     group=get_tensor_model_parallel_group())
+            lse = torch.logsumexp(lse_allgather, dim=0)
+            torch.distributed.all_reduce(losses, op=torch.distributed.ReduceOp.SUM,
+                                         group=get_tensor_model_parallel_group())
+            # The losses are currently lse_local - predicted_logit, we just have to subtract the
+            # lse_local and add the lse (global).
+            rank_per_sample = labels // partition_vocab_size
+            lse_local = lse_allgather[rank_per_sample,
+                                      torch.arange(batch, device=lse_allgather.device)]
+            losses += lse - lse_local
+            losses.masked_fill_(ignored_mask, 0)
+        else:
+            lse = lse_local
+
+        ctx.save_for_backward(logits_parallel, lse, labels_local)
+        ctx.smoothing = smoothing
+        ctx.ignored_index = ignored_index
+        ctx.inplace_backward = inplace_backward
+        return losses
+
+    @staticmethod
+    def backward(ctx, grad_loss):
+        logits_parallel, lse, labels = ctx.saved_tensors
+        if not grad_loss.is_contiguous():
+            grad_loss = grad_loss.contiguous()
+        grad_loss.masked_fill_(labels==ctx.ignored_index, 0)
+        grad_logits = xentropy_cuda_lib.backward(grad_loss, logits_parallel, lse, labels,
+                                                 ctx.smoothing, ctx.inplace_backward)
+        return grad_logits, None, None, None, None, None
+
+
+class CrossEntropyLossParallel(nn.Module):
+
+    def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0,
+                 inplace_backward=False):
+        super().__init__()
+        if reduction not in ['mean', 'none']:
+            raise NotImplementedError("Only support reduction = 'mean' or 'none'")
+        self.ignore_index = ignore_index
+        self.reduction = reduction
+        self.label_smoothing = label_smoothing
+        self.inplace_backward = inplace_backward
+
+    def forward(self, input, target):
+        assert input.is_cuda and target.is_cuda
+        # SoftmaxCrossEntropyLoss implicitly casts to float
+        loss = SoftmaxCrossEntropyLossParallelFn.apply(
+            input, target, self.label_smoothing, self.ignore_index, self.inplace_backward
+        )
+        if self.reduction == 'mean':
+            return loss.sum() / (target != self.ignore_index).sum()
+        else:
+            return loss

+ 39 - 0
tests/losses/test_cross_entropy_apex.py

@@ -0,0 +1,39 @@
+import math
+
+import torch
+import torch.nn.functional as F
+import pytest
+
+from einops import rearrange
+
+from src.losses.cross_entropy_apex import CrossEntropyLossApex
+
+is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
+
+
+@pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []))
+# @pytest.mark.parametrize('dtype', [torch.float16])
+@pytest.mark.parametrize('inplace_backward', [False, True])
+# @pytest.mark.parametrize('inplace_backward', [False])
+@pytest.mark.parametrize('vocab_size', [50257])
+def test_cross_entropy_loss_apex(vocab_size, inplace_backward, dtype):
+    device = 'cuda'
+    rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
+    # set seed
+    torch.random.manual_seed(0)
+    batch_size = 8
+    seqlen = 128
+    x_pt = torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True)
+    x = x_pt.detach().clone().requires_grad_()
+    y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
+    y[torch.randperm(batch_size * seqlen)[:10]] = -100
+    model_pt = torch.nn.CrossEntropyLoss()
+    model = CrossEntropyLossApex(inplace_backward=inplace_backward)
+    out = model(x, y)
+    out_pt = model_pt(x_pt.float(), y)
+    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)
+
+    g = torch.randn_like(out)
+    out_pt.backward(g)
+    out.backward(g)
+    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)

+ 56 - 0
tests/losses/test_cross_entropy_parallel.py

@@ -0,0 +1,56 @@
+# Run test with:
+# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py
+
+import math
+
+import torch
+import torch.nn.functional as F
+import pytest
+
+from apex.transformer import parallel_state
+from apex.transformer import tensor_parallel
+
+from src.losses.cross_entropy_parallel import CrossEntropyLossParallel
+
+is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
+
+
+@pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []))
+# @pytest.mark.parametrize('dtype', [torch.bfloat16])
+@pytest.mark.parametrize('inplace_backward', [False, True])
+# @pytest.mark.parametrize('inplace_backward', [False])
+@pytest.mark.parametrize('vocab_size', [50264])
+@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
+# @pytest.mark.parametrize('world_size', [2])
+def test_cross_entropy_loss_apex(vocab_size, world_size, inplace_backward, dtype):
+    assert vocab_size % world_size == 0
+    rtol, atol = ((1e-5, 1e-6) if dtype == torch.float32
+                  else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3)))
+    if not torch.distributed.is_initialized():
+        torch.distributed.init_process_group(backend='nccl', init_method='env://')
+    partition_vocab_size = vocab_size // world_size
+    device = f'cuda:{torch.distributed.get_rank()}'
+    assert world_size <= torch.distributed.get_world_size()
+    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
+    rank = parallel_state.get_tensor_model_parallel_rank()
+    # set seed
+    torch.random.manual_seed(0)
+    batch_size = 8
+    seqlen = 128
+    x_pt = (torch.randn(batch_size * seqlen, vocab_size, device=device,
+                        dtype=dtype) * 10).requires_grad_()
+    x = tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt).detach().clone().requires_grad_()
+    y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
+    y[torch.randperm(batch_size * seqlen)[:10]] = -100
+    model_pt = torch.nn.CrossEntropyLoss(reduction='none')
+    model = CrossEntropyLossParallel(reduction='none', inplace_backward=inplace_backward)
+    out = model(x, y)
+    out_pt = model_pt(x_pt.float(), y)
+    assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)
+
+    g = torch.randn_like(out)
+    out_pt.backward(g)
+    out.backward(g)
+    assert torch.allclose(x.grad, x_pt.grad[:, (rank * partition_vocab_size):(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol)
+
+    parallel_state.destroy_model_parallel()