|
@@ -0,0 +1,364 @@
|
|
|
+# [2022-10-23] Downloaded from https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
|
|
+# for benchmarking.
|
|
|
+# Fixing some dtype casting to make it work for bfloat16
|
|
|
+
|
|
|
+"""
|
|
|
+Fused Attention
|
|
|
+===============
|
|
|
+This is a Triton implementation of the Flash Attention algorithm
|
|
|
+(see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf)
|
|
|
+"""
|
|
|
+
|
|
|
+import pytest
|
|
|
+import torch
|
|
|
+
|
|
|
+import triton
|
|
|
+import triton.language as tl
|
|
|
+
|
|
|
+
|
|
|
+@triton.jit
|
|
|
+def _fwd_kernel(
|
|
|
+ Q, K, V, sm_scale,
|
|
|
+ TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
|
|
+ Out,
|
|
|
+ stride_qz, stride_qh, stride_qm, stride_qk,
|
|
|
+ stride_kz, stride_kh, stride_kn, stride_kk,
|
|
|
+ stride_vz, stride_vh, stride_vk, stride_vn,
|
|
|
+ stride_oz, stride_oh, stride_om, stride_on,
|
|
|
+ Z, H, N_CTX,
|
|
|
+ BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
|
|
|
+ BLOCK_N: tl.constexpr,
|
|
|
+):
|
|
|
+ start_m = tl.program_id(0)
|
|
|
+ off_hz = tl.program_id(1)
|
|
|
+ # initialize offsets
|
|
|
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
+ offs_n = tl.arange(0, BLOCK_N)
|
|
|
+ offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
|
+ off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk
|
|
|
+ off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk
|
|
|
+ off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk
|
|
|
+ # Initialize pointers to Q, K, V
|
|
|
+ q_ptrs = Q + off_q
|
|
|
+ k_ptrs = K + off_k
|
|
|
+ v_ptrs = V + off_v
|
|
|
+ # initialize pointer to m and l
|
|
|
+ t_ptrs = TMP + off_hz * N_CTX + offs_m
|
|
|
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
|
+ l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
|
|
+ acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
+ # load q: it will stay in SRAM throughout
|
|
|
+ q = tl.load(q_ptrs)
|
|
|
+ # loop over k, v and update accumulator
|
|
|
+ for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N):
|
|
|
+ start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
|
+ # -- compute qk ----
|
|
|
+ k = tl.load(k_ptrs + start_n * stride_kn)
|
|
|
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
|
+ qk += tl.dot(q, k, trans_b=True)
|
|
|
+ qk *= sm_scale
|
|
|
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf"))
|
|
|
+ # -- compute m_ij, p, l_ij
|
|
|
+ m_ij = tl.max(qk, 1)
|
|
|
+ p = tl.exp(qk - m_ij[:, None])
|
|
|
+ l_ij = tl.sum(p, 1)
|
|
|
+ # -- update m_i and l_i
|
|
|
+ m_i_new = tl.maximum(m_i, m_ij)
|
|
|
+ alpha = tl.exp(m_i - m_i_new)
|
|
|
+ beta = tl.exp(m_ij - m_i_new)
|
|
|
+ l_i_new = alpha * l_i + beta * l_ij
|
|
|
+ # -- update output accumulator --
|
|
|
+ # scale p
|
|
|
+ p_scale = beta / l_i_new
|
|
|
+ p = p * p_scale[:, None]
|
|
|
+ # scale acc
|
|
|
+ acc_scale = l_i / l_i_new * alpha
|
|
|
+ tl.store(t_ptrs, acc_scale)
|
|
|
+ acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load
|
|
|
+ acc = acc * acc_scale[:, None]
|
|
|
+ # update acc
|
|
|
+ v = tl.load(v_ptrs + start_n * stride_vk)
|
|
|
+ p = p.to(q.dtype)
|
|
|
+ acc += tl.dot(p, v)
|
|
|
+ # update m_i and l_i
|
|
|
+ l_i = l_i_new
|
|
|
+ m_i = m_i_new
|
|
|
+ # rematerialize offsets to save registers
|
|
|
+ start_m = tl.program_id(0)
|
|
|
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
+ # write back l and m
|
|
|
+ l_ptrs = L + off_hz * N_CTX + offs_m
|
|
|
+ m_ptrs = M + off_hz * N_CTX + offs_m
|
|
|
+ tl.store(l_ptrs, l_i)
|
|
|
+ tl.store(m_ptrs, m_i)
|
|
|
+ # initialize pointers to output
|
|
|
+ offs_n = tl.arange(0, BLOCK_DMODEL)
|
|
|
+ off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on
|
|
|
+ out_ptrs = Out + off_o
|
|
|
+ tl.store(out_ptrs, acc)
|
|
|
+
|
|
|
+
|
|
|
+@triton.jit
|
|
|
+def _bwd_preprocess(
|
|
|
+ Out, DO, L,
|
|
|
+ NewDO, Delta,
|
|
|
+ BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
|
|
|
+):
|
|
|
+ off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
+ off_n = tl.arange(0, D_HEAD)
|
|
|
+ # load
|
|
|
+ o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
|
|
|
+ do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32)
|
|
|
+ denom = tl.load(L + off_m).to(tl.float32)
|
|
|
+ # compute
|
|
|
+ do = do / denom[:, None]
|
|
|
+ delta = tl.sum(o * do, axis=1)
|
|
|
+ # write-back
|
|
|
+ tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do)
|
|
|
+ tl.store(Delta + off_m, delta)
|
|
|
+
|
|
|
+
|
|
|
+@triton.jit
|
|
|
+def _bwd_kernel(
|
|
|
+ Q, K, V, sm_scale, Out, DO,
|
|
|
+ DQ, DK, DV,
|
|
|
+ L, M,
|
|
|
+ D,
|
|
|
+ stride_qz, stride_qh, stride_qm, stride_qk,
|
|
|
+ stride_kz, stride_kh, stride_kn, stride_kk,
|
|
|
+ stride_vz, stride_vh, stride_vk, stride_vn,
|
|
|
+ Z, H, N_CTX,
|
|
|
+ num_block,
|
|
|
+ BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
|
|
|
+ BLOCK_N: tl.constexpr,
|
|
|
+):
|
|
|
+ off_hz = tl.program_id(0)
|
|
|
+ off_z = off_hz // H
|
|
|
+ off_h = off_hz % H
|
|
|
+ # offset pointers for batch/head
|
|
|
+ Q += off_z * stride_qz + off_h * stride_qh
|
|
|
+ K += off_z * stride_qz + off_h * stride_qh
|
|
|
+ V += off_z * stride_qz + off_h * stride_qh
|
|
|
+ DO += off_z * stride_qz + off_h * stride_qh
|
|
|
+ DQ += off_z * stride_qz + off_h * stride_qh
|
|
|
+ DK += off_z * stride_qz + off_h * stride_qh
|
|
|
+ DV += off_z * stride_qz + off_h * stride_qh
|
|
|
+ for start_n in range(0, num_block):
|
|
|
+ lo = start_n * BLOCK_M
|
|
|
+ # initialize row/col offsets
|
|
|
+ offs_qm = lo + tl.arange(0, BLOCK_M)
|
|
|
+ offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
+ offs_m = tl.arange(0, BLOCK_N)
|
|
|
+ offs_k = tl.arange(0, BLOCK_DMODEL)
|
|
|
+ # initialize pointers to value-like data
|
|
|
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
|
|
|
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk)
|
|
|
+ v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk)
|
|
|
+ do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
|
|
|
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk)
|
|
|
+ # pointer to row-wise quantities in value-like data
|
|
|
+ D_ptrs = D + off_hz * N_CTX
|
|
|
+ m_ptrs = M + off_hz * N_CTX
|
|
|
+ # initialize dv amd dk
|
|
|
+ dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
+ dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
+ # k and v stay in SRAM throughout
|
|
|
+ k = tl.load(k_ptrs)
|
|
|
+ v = tl.load(v_ptrs)
|
|
|
+ # loop over rows
|
|
|
+ for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
|
|
|
+ offs_m_curr = start_m + offs_m
|
|
|
+ # load q, k, v, do on-chip
|
|
|
+ q = tl.load(q_ptrs)
|
|
|
+ # recompute p = softmax(qk, dim=-1).T
|
|
|
+ # NOTE: `do` is pre-divided by `l`; no normalization here
|
|
|
+ qk = tl.dot(q, k, trans_b=True)
|
|
|
+ qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
|
|
+ m = tl.load(m_ptrs + offs_m_curr)
|
|
|
+ p = tl.exp(qk * sm_scale - m[:, None])
|
|
|
+ # compute dv
|
|
|
+ do = tl.load(do_ptrs)
|
|
|
+ dv += tl.dot(p.to(q.dtype), do, trans_a=True)
|
|
|
+ # compute dp = dot(v, do)
|
|
|
+ Di = tl.load(D_ptrs + offs_m_curr)
|
|
|
+ dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
|
|
|
+ dp += tl.dot(do, v, trans_b=True)
|
|
|
+ # compute ds = p * (dp - delta[:, None])
|
|
|
+ ds = p * dp * sm_scale
|
|
|
+ # compute dk = dot(ds.T, q)
|
|
|
+ dk += tl.dot(ds.to(q.dtype), q, trans_a=True)
|
|
|
+ # # compute dq
|
|
|
+ dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
|
|
+ dq += tl.dot(ds.to(q.dtype), k)
|
|
|
+ tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
|
|
+ # # increment pointers
|
|
|
+ dq_ptrs += BLOCK_M * stride_qm
|
|
|
+ q_ptrs += BLOCK_M * stride_qm
|
|
|
+ do_ptrs += BLOCK_M * stride_qm
|
|
|
+ # write-back
|
|
|
+ dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk)
|
|
|
+ dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk)
|
|
|
+ tl.store(dv_ptrs, dv)
|
|
|
+ tl.store(dk_ptrs, dk)
|
|
|
+
|
|
|
+
|
|
|
+class _attention(torch.autograd.Function):
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def forward(ctx, q, k, v, sm_scale):
|
|
|
+ BLOCK = 128
|
|
|
+ # shape constraints
|
|
|
+ Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
|
|
+ assert Lq == Lk and Lk == Lv
|
|
|
+ assert Lk in {16, 32, 64, 128}
|
|
|
+ o = torch.empty_like(q)
|
|
|
+ grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1])
|
|
|
+ tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
|
|
+ L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
|
|
+ m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
|
|
+ num_warps = 4 if Lk <= 64 else 8
|
|
|
+
|
|
|
+ _fwd_kernel[grid](
|
|
|
+ q, k, v, sm_scale,
|
|
|
+ tmp, L, m,
|
|
|
+ o,
|
|
|
+ q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
|
|
+ k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
|
|
+ v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
|
|
+ o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
|
|
+ q.shape[0], q.shape[1], q.shape[2],
|
|
|
+ BLOCK_M=BLOCK, BLOCK_N=BLOCK,
|
|
|
+ BLOCK_DMODEL=Lk, num_warps=num_warps,
|
|
|
+ num_stages=1,
|
|
|
+ )
|
|
|
+ ctx.save_for_backward(q, k, v, o, L, m)
|
|
|
+ ctx.BLOCK = BLOCK
|
|
|
+ ctx.grid = grid
|
|
|
+ ctx.sm_scale = sm_scale
|
|
|
+ ctx.BLOCK_DMODEL = Lk
|
|
|
+ return o
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def backward(ctx, do):
|
|
|
+ q, k, v, o, l, m = ctx.saved_tensors
|
|
|
+ do = do.contiguous()
|
|
|
+ dq = torch.zeros_like(q, dtype=torch.float32)
|
|
|
+ dk = torch.empty_like(k)
|
|
|
+ dv = torch.empty_like(v)
|
|
|
+ do_scaled = torch.empty_like(do)
|
|
|
+ delta = torch.empty_like(l)
|
|
|
+ _bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )](
|
|
|
+ o, do, l,
|
|
|
+ do_scaled, delta,
|
|
|
+ BLOCK_M=ctx.BLOCK, D_HEAD=ctx.BLOCK_DMODEL,
|
|
|
+ )
|
|
|
+
|
|
|
+ # NOTE: kernel currently buggy for other values of `num_warps`
|
|
|
+ num_warps = 8
|
|
|
+ _bwd_kernel[(ctx.grid[1],)](
|
|
|
+ q, k, v, ctx.sm_scale,
|
|
|
+ o, do_scaled,
|
|
|
+ dq, dk, dv,
|
|
|
+ l, m,
|
|
|
+ delta,
|
|
|
+ q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
|
|
+ k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
|
|
+ v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
|
|
+ q.shape[0], q.shape[1], q.shape[2],
|
|
|
+ ctx.grid[0],
|
|
|
+ BLOCK_M=ctx.BLOCK, BLOCK_N=ctx.BLOCK,
|
|
|
+ BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=num_warps,
|
|
|
+ num_stages=1,
|
|
|
+ )
|
|
|
+ return dq, dk, dv, None
|
|
|
+
|
|
|
+
|
|
|
+attention = _attention.apply
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 2, 2048, 64)])
|
|
|
+def test_op(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
|
|
+ torch.manual_seed(20)
|
|
|
+ q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
|
+ k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
|
+ v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
|
|
+ sm_scale = 0.3
|
|
|
+ dout = torch.randn_like(q)
|
|
|
+ # reference implementation
|
|
|
+ M = torch.tril(torch.ones((N_CTX, N_CTX), device="cuda"))
|
|
|
+ p = torch.matmul(q, k.transpose(2, 3)) * sm_scale
|
|
|
+ for z in range(Z):
|
|
|
+ for h in range(H):
|
|
|
+ p[:, :, M == 0] = float("-inf")
|
|
|
+ p = torch.softmax(p.float(), dim=-1).half()
|
|
|
+ ref_out = torch.matmul(p, v)
|
|
|
+ ref_out.backward(dout)
|
|
|
+ ref_dv, v.grad = v.grad.clone(), None
|
|
|
+ ref_dk, k.grad = k.grad.clone(), None
|
|
|
+ ref_dq, q.grad = q.grad.clone(), None
|
|
|
+ # triton implementation
|
|
|
+ tri_out = attention(q, k, v, sm_scale)
|
|
|
+ tri_out.backward(dout)
|
|
|
+ tri_dv, v.grad = v.grad.clone(), None
|
|
|
+ tri_dk, k.grad = k.grad.clone(), None
|
|
|
+ tri_dq, q.grad = q.grad.clone(), None
|
|
|
+ # compare
|
|
|
+ triton.testing.assert_almost_equal(ref_out, tri_out)
|
|
|
+ triton.testing.assert_almost_equal(ref_dv, tri_dv)
|
|
|
+ triton.testing.assert_almost_equal(ref_dk, tri_dk)
|
|
|
+ triton.testing.assert_almost_equal(ref_dq, tri_dq)
|
|
|
+
|
|
|
+
|
|
|
+try:
|
|
|
+ from flash_attn.flash_attn_interface import flash_attn_func
|
|
|
+ HAS_FLASH = True
|
|
|
+except BaseException:
|
|
|
+ HAS_FLASH = False
|
|
|
+
|
|
|
+BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64
|
|
|
+# vary seq length for fixed head and batch=4
|
|
|
+configs = [triton.testing.Benchmark(
|
|
|
+ x_names=['N_CTX'],
|
|
|
+ x_vals=[2**i for i in range(10, 16)],
|
|
|
+ line_arg='provider',
|
|
|
+ line_vals=['triton'] + (['flash'] if HAS_FLASH else []),
|
|
|
+ line_names=['Triton'] + (['Flash'] if HAS_FLASH else []),
|
|
|
+ styles=[('red', '-'), ('blue', '-')],
|
|
|
+ ylabel='ms',
|
|
|
+ plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-{mode}',
|
|
|
+ args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'dtype': torch.float16, 'mode': mode}
|
|
|
+) for mode in ['bwd']]
|
|
|
+
|
|
|
+
|
|
|
+@triton.testing.perf_report(configs)
|
|
|
+def bench_flash_attention(BATCH, H, N_CTX, D_HEAD, mode, provider, dtype=torch.float16, device="cuda"):
|
|
|
+ assert mode in ['fwd', 'bwd']
|
|
|
+ warmup = 25
|
|
|
+ rep = 100
|
|
|
+ if provider == "triton":
|
|
|
+ q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
|
|
|
+ k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
|
|
|
+ v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device="cuda", requires_grad=True)
|
|
|
+ sm_scale = 1.3
|
|
|
+ fn = lambda: attention(q, k, v, sm_scale)
|
|
|
+ if mode == 'bwd':
|
|
|
+ o = fn()
|
|
|
+ do = torch.randn_like(o)
|
|
|
+ fn = lambda: o.backward(do, retain_graph=True)
|
|
|
+ ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep)
|
|
|
+ return ms
|
|
|
+ if provider == "flash":
|
|
|
+ lengths = torch.full((BATCH,), fill_value=N_CTX, device=device)
|
|
|
+ cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32)
|
|
|
+ cu_seqlens[1:] = lengths.cumsum(0)
|
|
|
+ qkv = torch.randn((BATCH * N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True)
|
|
|
+ fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=True)
|
|
|
+ if mode == 'bwd':
|
|
|
+ o = fn()
|
|
|
+ do = torch.randn_like(o)
|
|
|
+ fn = lambda: o.backward(do, retain_graph=True)
|
|
|
+ ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep)
|
|
|
+ return ms
|
|
|
+
|
|
|
+# only works on A100 at the moment
|
|
|
+# bench_flash_attention.run(save_path='.', print_data=True)
|