1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import torch
- def convert_flow_to_deformation(flow):
- r"""convert flow fields to deformations.
- Args:
- flow (tensor): Flow field obtained by the model
- Returns:
- deformation (tensor): The deformation used for warpping
- """
- b,c,h,w = flow.shape
- flow_norm = 2 * torch.cat([flow[:,:1,...]/(w-1),flow[:,1:,...]/(h-1)], 1)
- grid = make_coordinate_grid(flow)
- deformation = grid + flow_norm.permute(0,2,3,1)
- return deformation
- def make_coordinate_grid(flow):
- r"""obtain coordinate grid with the same size as the flow filed.
- Args:
- flow (tensor): Flow field obtained by the model
- Returns:
- grid (tensor): The grid with the same size as the input flow
- """
- b,c,h,w = flow.shape
- x = torch.arange(w).to(flow)
- y = torch.arange(h).to(flow)
- x = (2 * (x / (w - 1)) - 1)
- y = (2 * (y / (h - 1)) - 1)
- yy = y.view(-1, 1).repeat(1, w)
- xx = x.view(1, -1).repeat(h, 1)
- meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
- meshed = meshed.expand(b, -1, -1, -1)
- return meshed
-
- def warp_image(source_image, deformation):
- r"""warp the input image according to the deformation
- Args:
- source_image (tensor): source images to be warpped
- deformation (tensor): deformations used to warp the images; value in range (-1, 1)
- Returns:
- output (tensor): the warpped images
- """
- _, h_old, w_old, _ = deformation.shape
- _, _, h, w = source_image.shape
- if h_old != h or w_old != w:
- deformation = deformation.permute(0, 3, 1, 2)
- deformation = torch.nn.functional.interpolate(deformation, size=(h, w), mode='bilinear')
- deformation = deformation.permute(0, 2, 3, 1)
- return torch.nn.functional.grid_sample(source_image, deformation)
|