12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199 |
- import asyncio
- import os
- import time
- from dataclasses import dataclass
- from functools import partial
- from typing import (AsyncGenerator, Callable, Dict, Iterable, List, Optional,
- Set, Tuple, Type, Union)
- import torch
- from loguru import logger
- from transformers import PreTrainedTokenizer
- from typing_extensions import assert_never
- from aphrodite.common.config import (DecodingConfig, EngineConfig, LoRAConfig,
- ModelConfig, ParallelConfig,
- SchedulerConfig)
- from aphrodite.common.outputs import EmbeddingRequestOutput, RequestOutput
- from aphrodite.common.pooling_params import PoolingParams
- from aphrodite.common.sampling_params import SamplingParams
- from aphrodite.common.sequence import (ExecuteModelRequest, SamplerOutput,
- SequenceGroupMetadata)
- from aphrodite.engine.aphrodite_engine import (AphroditeEngine,
- DecoderPromptComponents,
- PromptComponents)
- from aphrodite.engine.args_tools import AsyncEngineArgs
- from aphrodite.engine.async_timeout import asyncio_timeout
- from aphrodite.engine.metrics_types import StatLoggerBase
- from aphrodite.executor.executor_base import ExecutorAsyncBase
- from aphrodite.executor.ray_utils import initialize_ray_cluster, ray
- from aphrodite.inputs import (EncoderDecoderLLMInputs, LLMInputs, PromptInputs,
- SingletonPromptInputs)
- from aphrodite.inputs.parse import is_explicit_encoder_decoder_prompt
- from aphrodite.lora.request import LoRARequest
- from aphrodite.processing.scheduler import SchedulerOutputs
- from aphrodite.prompt_adapter.request import PromptAdapterRequest
- ENGINE_ITERATION_TIMEOUT_S = int(
- os.environ.get("APHRODITE_ENGINE_ITERATION_TIMEOUT_S", "60"))
- class AsyncEngineDeadError(RuntimeError):
- pass
- def _log_task_completion(task: asyncio.Task,
- error_callback: Callable[[Exception], None]) -> None:
- """This function is only intended for the `engine.run_engine_loop()` task.
- In particular, that task runs a `while True` loop that can only exit if
- there is an exception.
- """
- exception = None
- try:
- return_value = task.result()
- raise AssertionError(
- f"The engine background task should never finish without an "
- f"exception. {return_value}")
- except asyncio.exceptions.CancelledError:
- # We assume that if the task is cancelled, we are gracefully shutting
- # down. This should only happen on program exit.
- logger.info("Engine is gracefully shutting down.")
- except Exception as e:
- exception = e
- logger.error("Engine background task failed", exc_info=e)
- error_callback(exception)
- raise AsyncEngineDeadError(
- "Task finished unexpectedly. This should never happen! "
- "Please open an issue on Github. See stack trace above for the "
- "actual cause.") from e
- STOP_ITERATION = Exception() # Sentinel
- class AsyncStream:
- """A stream of RequestOutputs or EmbeddingRequestOutputs for a request
- that can be iterated over asynchronously via an async generator."""
- def __init__(self, request_id: str, cancel: Callable[[str], None]) -> None:
- self.request_id = request_id
- self._cancel = cancel
- self._queue: asyncio.Queue = asyncio.Queue()
- self._finished = False
- def put(self, item: Union[RequestOutput, EmbeddingRequestOutput,
- Exception]) -> None:
- if self._finished:
- return
- self._queue.put_nowait(item)
- def finish(
- self,
- exception: Optional[Union[BaseException, Type[BaseException]]] = None,
- ) -> None:
- if not self._finished:
- self._finished = True
- self._queue.put_nowait(
- exception if exception is not None else STOP_ITERATION)
- @property
- def finished(self) -> bool:
- return self._finished
- async def generator(
- self
- ) -> AsyncGenerator[Union[RequestOutput, EmbeddingRequestOutput], None]:
- try:
- while not self._finished:
- result = await self._queue.get()
- if isinstance(result, Exception):
- if result == STOP_ITERATION:
- return
- raise result
- yield result
- except GeneratorExit:
- self._cancel(self.request_id)
- raise asyncio.CancelledError from None
- class RequestTracker:
- """Synchronous abstraction for tracking requests."""
- def __init__(self) -> None:
- self._request_streams: Dict[str, AsyncStream] = {}
- self._aborted_requests: asyncio.Queue[str] = asyncio.Queue()
- self._new_requests: asyncio.Queue[Tuple[AsyncStream,
- dict]] = asyncio.Queue()
- self.new_requests_event = asyncio.Event()
- def __contains__(self, item):
- return item in self._request_streams
- def __len__(self) -> int:
- return len(self._request_streams)
- def propagate_exception(self,
- exc: Exception,
- request_id: Optional[str] = None) -> None:
- """Propagate an exception to request streams
- (all if request_id is None)."""
- if request_id is not None:
- self.abort_request(request_id, exception=exc)
- else:
- # NB: tuple() used here because self.abort_request pops the stream
- # out of self._request_streams, so we can't iterate on it directly
- for rid in tuple(self._request_streams.keys()):
- self.abort_request(rid, exception=exc)
- def process_request_output(self,
- request_output: Union[RequestOutput,
- EmbeddingRequestOutput],
- *,
- verbose: bool = False) -> None:
- """Process a request output from the engine."""
- request_id = request_output.request_id
- finished = request_output.finished
- if finished:
- stream = self._request_streams.pop(request_id, None)
- else:
- stream = self._request_streams.get(request_id)
- # Guard against a KeyError which can occur if the request was aborted
- # while the output was generated
- if stream is not None:
- stream.put(request_output)
- if finished:
- stream.finish()
- if verbose and finished:
- logger.info(f"Finished request {request_id}.")
- def process_exception(self,
- request_id: str,
- exception: BaseException,
- *,
- verbose: bool = False) -> None:
- """Propagate an exception from the engine."""
- if verbose:
- logger.info(f"Finished request {request_id}.")
- self.abort_request(request_id, exception=exception)
- def add_request(self,
- request_id: str,
- *,
- verbose: bool = False,
- **engine_add_request_kwargs) -> AsyncStream:
- """Add a request to be sent to the engine on the next background
- loop iteration."""
- if request_id in self._request_streams:
- raise KeyError(f"Request {request_id} already exists.")
- abort_request = partial(self.abort_request, verbose=verbose)
- stream = AsyncStream(request_id, abort_request)
- self._new_requests.put_nowait((stream, {
- "request_id": request_id,
- **engine_add_request_kwargs
- }))
- self.new_requests_event.set()
- if verbose:
- logger.info(f"Added request {request_id}.")
- return stream
- def abort_request(self,
- request_id: str,
- *,
- exception: Optional[Union[BaseException,
- Type[BaseException]]] = None,
- verbose: bool = False) -> None:
- """Abort a request during next background loop iteration."""
- if verbose:
- logger.info(f"Aborted request {request_id}.")
- self._aborted_requests.put_nowait(request_id)
- stream = self._request_streams.pop(request_id, None)
- if stream is not None:
- stream.finish(exception=exception)
- def get_new_and_aborted_requests(self) -> Tuple[List[Dict], Set[str]]:
- """Get the new requests and finished requests to be
- sent to the engine."""
- new_requests: List[Dict] = []
- finished_requests: Set[str] = set()
- while not self._aborted_requests.empty():
- request_id = self._aborted_requests.get_nowait()
- finished_requests.add(request_id)
- while not self._new_requests.empty():
- stream, new_request = self._new_requests.get_nowait()
- request_id = stream.request_id
- if request_id in finished_requests:
- # The request has already been aborted.
- stream.finish(asyncio.CancelledError)
- finished_requests.discard(request_id)
- else:
- self._request_streams[request_id] = stream
- new_requests.append(new_request)
- return new_requests, finished_requests
- async def wait_for_new_requests(self):
- if not self.has_new_requests():
- await self.new_requests_event.wait()
- self.new_requests_event.clear()
- def has_new_requests(self):
- return not self._new_requests.empty()
- @dataclass
- class SchedulerOutputState:
- """Caches the scheduler outputs for a virtual engine. Used for Multi-Step"""
- last_output: Optional[SamplerOutput] = None
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None
- scheduler_outputs: Optional[SchedulerOutputs] = None
- class _AsyncAphrodite(AphroditeEngine):
- """Extension of AphroditeEngine to add async methods."""
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- pipeline_parallel_size = \
- self.parallel_config.pipeline_parallel_size
- self.cached_scheduler_outputs = [
- SchedulerOutputState() for _ in range(pipeline_parallel_size)
- ]
- async def step_async(
- self, virtual_engine: int
- ) -> List[Union[RequestOutput, EmbeddingRequestOutput]]:
- """Performs one decoding iteration and returns newly generated results.
- The workers are ran asynchronously if possible.
- This function performs one decoding iteration of the engine. It first
- schedules the sequences to be executed in the next iteration and the
- token blocks to be swapped in/out/copy. Then, it executes the model
- and updates the scheduler with the model outputs. Finally, it decodes
- the sequences and returns the newly generated results.
- """
- # these are cached outputs from previous iterations. None if on first
- # iteration
- cached_outputs = self.cached_scheduler_outputs[virtual_engine]
- seq_group_metadata_list = cached_outputs.seq_group_metadata_list
- scheduler_outputs = cached_outputs.scheduler_outputs
- # skip the scheduler if there are any remaining steps in the seq groups.
- # This ensures that the scheduler is only called again when the current
- # batch has completed.
- if not self._has_remaining_steps(seq_group_metadata_list):
- seq_group_metadata_list, scheduler_outputs = self.scheduler[
- virtual_engine].schedule()
- if (self.scheduler_config.is_multi_step
- and scheduler_outputs.num_lookahead_slots > 0):
- # cache the scheduler outputs for the next iteration if we have
- # lookahead slots
- self._cache_scheduler_outputs_for_multi_step(
- virtual_engine, seq_group_metadata_list, scheduler_outputs)
- assert seq_group_metadata_list is not None
- assert scheduler_outputs is not None
- if not scheduler_outputs.is_empty():
- finished_requests_ids = self.scheduler[
- virtual_engine].get_and_reset_finished_requests_ids()
- # Check if we have a cached last_output from the previous iteration.
- # For supporting PP this is probably the best way to pass the
- # sampled_token_ids, as a separate broadcast over all the PP stages
- # will cause one virtual engine's microbatch to block the pipeline.
- last_sampled_token_ids = \
- self._get_last_sampled_token_ids(virtual_engine)
- execute_model_req = ExecuteModelRequest(
- seq_group_metadata_list=seq_group_metadata_list,
- blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
- blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
- blocks_to_copy=scheduler_outputs.blocks_to_copy,
- virtual_engine=virtual_engine,
- num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
- running_queue_size=scheduler_outputs.running_queue_size,
- finished_requests_ids=finished_requests_ids,
- # We use ExecuteModelRequest to pass the last sampled_token_ids
- # to each of the non-last PP stages for in-place prepare_input.
- last_sampled_token_ids=last_sampled_token_ids)
- # Execute the model.
- output = await self.model_executor.execute_model_async(
- execute_model_req)
- # we need to do this here so that last step's sampled_token_ids can
- # be passed to the next iteration for PP.
- if self.scheduler_config.is_multi_step:
- self._update_cached_scheduler_output(virtual_engine, output)
- else:
- output = []
- # Finish the current step for all the sequence groups.
- if self.scheduler_config.is_multi_step:
- for seq_group in seq_group_metadata_list:
- seq_group.finish_step()
- if not self._has_remaining_steps(seq_group_metadata_list):
- # clear the cache if we have finished all the steps
- if self.scheduler_config.is_multi_step:
- self.cached_scheduler_outputs[
- virtual_engine] = SchedulerOutputState()
- request_outputs = self._process_model_outputs(
- output, scheduler_outputs.scheduled_seq_groups,
- scheduler_outputs.ignored_seq_groups, seq_group_metadata_list)
- else:
- request_outputs = []
- # Log stats.
- self.do_log_stats(scheduler_outputs, output)
- return request_outputs
-
- def _has_remaining_steps(
- self, seq_group_metadata_list: Optional[List[SequenceGroupMetadata]]
- ) -> bool:
- if (not self.scheduler_config.is_multi_step
- or not seq_group_metadata_list):
- return False
- # TODO: this is a sanity check for now to make sure that all the
- # seqs are on the same steps. Eventually we will want to do some sort of
- # dynamic scheduling when doing multi-step decoding.
- ref_remaining_steps = seq_group_metadata_list[0].state.remaining_steps
- if any([
- seq_group.state.remaining_steps != ref_remaining_steps
- for seq_group in seq_group_metadata_list[1:]
- ]):
- raise AssertionError(("All running sequence groups should "
- "have the same remaining steps."))
- return ref_remaining_steps > 0
- def _cache_scheduler_outputs_for_multi_step(
- self, virtual_engine: int,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
- scheduler_outputs: SchedulerOutputs) -> None:
- self.cached_scheduler_outputs[
- virtual_engine].seq_group_metadata_list = seq_group_metadata_list
- self.cached_scheduler_outputs[virtual_engine].scheduler_outputs = \
- scheduler_outputs
- self.cached_scheduler_outputs[virtual_engine].last_output = None
- def _get_last_sampled_token_ids(
- self, virtual_engine: int) -> Optional[torch.Tensor]:
- cached_last_output = self.cached_scheduler_outputs[
- virtual_engine].last_output
- if (self.scheduler_config.is_multi_step
- and self.parallel_config.pipeline_parallel_size > 1
- and cached_last_output is not None
- and cached_last_output.sampled_token_ids_cpu is not None):
- return cached_last_output.sampled_token_ids_cpu
- return None
- def _update_cached_scheduler_output(
- self, virtual_engine: int,
- output: List[Optional[SamplerOutput]]) -> None:
- if (self.parallel_config.pipeline_parallel_size > 1 and len(output) > 0
- and output[0] is not None):
- last_output = output[-1]
- assert last_output is not None
- assert last_output.sampled_token_ids_cpu is not None
- assert last_output.sampled_token_ids is None
- assert last_output.sampled_token_probs is None
- self.cached_scheduler_outputs[
- virtual_engine].last_output = last_output
- async def stop_remote_worker_execution_loop_async(self) -> None:
- """Stop the remote worker execution loop."""
- await self.model_executor.stop_remote_worker_execution_loop_async()
- async def _tokenize_prompt_async(
- self,
- prompt: str,
- request_id: str,
- lora_request: Optional[LoRARequest],
- ) -> List[int]:
- """Async version of :meth:`_tokenize_prompt`."""
- tokenizer = self.get_tokenizer_group("prompts must be None if "
- "skip_tokenizer_init is True")
- return await tokenizer.encode_async(request_id=request_id,
- prompt=prompt,
- lora_request=lora_request)
- async def _extract_prompt_components_async(
- self,
- inputs: SingletonPromptInputs,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- ) -> PromptComponents:
- """Async version of :meth:`_extract_prompt_components`."""
- if isinstance(inputs, str):
- prompt = inputs
- prompt_token_ids = await self._tokenize_prompt_async(
- prompt,
- request_id=request_id,
- lora_request=lora_request,
- )
- multi_modal_data = None
- elif isinstance(inputs, dict):
- if "prompt_token_ids" in inputs:
- prompt = None
- prompt_token_ids = inputs["prompt_token_ids"]
- else:
- # NOTE: This extra assignment is required to pass mypy
- prompt = parsed_prompt = inputs["prompt"]
- prompt_token_ids = await self._tokenize_prompt_async(
- parsed_prompt,
- request_id=request_id,
- lora_request=lora_request,
- )
- multi_modal_data = inputs.get("multi_modal_data")
- else:
- assert_never(inputs)
- return prompt, prompt_token_ids, multi_modal_data
- async def _process_encoder_decoder_prompt_async(
- self,
- inputs: PromptInputs,
- request_id: str,
- ) -> EncoderDecoderLLMInputs:
- """Async version of :meth:`_process_encoder_decoder_prompt`."""
- encoder_comps: PromptComponents
- decoder_comps: DecoderPromptComponents
- if is_explicit_encoder_decoder_prompt(inputs):
- encoder_task = self._extract_prompt_components_async(
- inputs["encoder_prompt"],
- request_id=request_id,
- )
- if (decoder_input := inputs["decoder_prompt"]) is None:
- encoder_comps = await encoder_task
- decoder_comps = None, None, None
- else:
- decoder_task = self._extract_prompt_components_async(
- decoder_input,
- request_id=request_id,
- )
- encoder_comps, decoder_comps = await asyncio.gather(
- encoder_task, decoder_task)
- else:
- encoder_comps = await self._extract_prompt_components_async(
- inputs,
- request_id=request_id,
- )
- decoder_comps = None, None, None
- return self._build_enc_dec_llm_inputs(encoder_comps, decoder_comps)
- async def _process_decoder_only_prompt_async(
- self,
- inputs: SingletonPromptInputs,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> LLMInputs:
- """Async version of :meth:`_process_decoder_only_prompt`."""
- prompt_comps = await self._extract_prompt_components_async(
- inputs,
- request_id=request_id,
- lora_request=lora_request,
- )
- return self._build_decoder_only_llm_inputs(
- prompt_comps,
- prompt_adapter_request=prompt_adapter_request,
- )
- async def process_model_inputs_async(
- self,
- inputs: PromptInputs,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> Union[LLMInputs, EncoderDecoderLLMInputs]:
- """Async version of :meth:`process_model_inputs`."""
- if self.is_encoder_decoder_model():
- # Encoder-decoder model requires special mapping of
- # input prompts to encoder & decoder
- model_inputs = await self._process_encoder_decoder_prompt_async(
- inputs,
- request_id=request_id,
- )
- else:
- if is_explicit_encoder_decoder_prompt(inputs):
- raise ValueError("Cannot pass encoder-decoder prompt "
- "to decoder-only models")
- # Decoder-only operation
- model_inputs = await self._process_decoder_only_prompt_async(
- inputs,
- request_id=request_id,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- return self.input_processor(model_inputs)
- async def add_request_async(
- self,
- request_id: str,
- inputs: PromptInputs,
- params: Union[SamplingParams, PoolingParams],
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> None:
- """Async version of :meth:`add_request`."""
- if lora_request is not None and not self.lora_config:
- raise ValueError(f"Got lora_request {lora_request} but LoRA is "
- "not enabled!")
- if arrival_time is None:
- arrival_time = time.time()
- processed_inputs = await self.process_model_inputs_async(
- inputs,
- request_id=request_id,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- self._add_processed_request(
- request_id=request_id,
- processed_inputs=processed_inputs,
- params=params,
- arrival_time=arrival_time,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- async def check_health_async(self) -> None:
- if self.tokenizer:
- self.tokenizer.check_health()
- self.model_executor.check_health()
- class AsyncAphrodite:
- """An asynchronous wrapper for AphroditeEngine.
- This class is used to wrap the AphroditeEngine class to make it
- asynchronous. It uses asyncio to create a background loop that keeps
- processing incoming requests. The AphroditeEngine is kicked by the
- generate method when there are requests in the waiting queue.
- The generate method yields the outputs from the AphroditeEngine
- to the caller.
- NOTE: For the comprehensive list of arguments, see `AphroditeEngine`.
- Args:
- worker_use_ray: Whether to use Ray for model workers. Required for
- distributed execution. Should be the same as
- `parallel_config.worker_use_ray`.
- engine_use_ray: Whether to make AphroditeEngine a Ray actor. If so, the
- async frontend will be executed in a separate process as the
- model workers.
- log_requests: Whether to log the requests.
- start_engine_loop: If True, the background task to run the engine
- will be automatically started in the generate call.
- *args: Arguments for AphroditeEngine.
- *kwargs: Arguments for AphroditeEngine.
- """
- _engine_class: Type[_AsyncAphrodite] = _AsyncAphrodite
- def __init__(self,
- worker_use_ray: bool,
- engine_use_ray: bool,
- *args,
- log_requests: bool = True,
- start_engine_loop: bool = True,
- **kwargs) -> None:
- self.worker_use_ray = worker_use_ray
- self.engine_use_ray = engine_use_ray
- self.log_requests = log_requests
- self.engine = self._init_engine(*args, **kwargs)
- self.background_loop: Optional[asyncio.Future] = None
- # We need to keep a reference to unshielded
- # task as well to prevent it from being garbage
- # collected
- self._background_loop_unshielded: Optional[asyncio.Task] = None
- self.start_engine_loop = start_engine_loop
- self._errored_with: Optional[BaseException] = None
- # Lazy initialized fields
- self._request_tracker: RequestTracker
- @classmethod
- def _get_executor_cls(
- cls, engine_config: EngineConfig) -> Type[ExecutorAsyncBase]:
- distributed_executor_backend = (
- engine_config.parallel_config.distributed_executor_backend)
- if isinstance(distributed_executor_backend, type):
- if not issubclass(distributed_executor_backend, ExecutorAsyncBase):
- raise TypeError(
- "distributed_executor_backend must be a subclass of "
- f"ExecutorAsyncBase. Got {distributed_executor_backend}.")
- if distributed_executor_backend.uses_ray: # type: ignore
- initialize_ray_cluster(engine_config.parallel_config)
- executor_class = distributed_executor_backend
- elif engine_config.device_config.device_type == "neuron":
- from aphrodite.executor.neuron_executor import NeuronExecutorAsync
- executor_class = NeuronExecutorAsync
- elif engine_config.device_config.device_type == "tpu":
- if distributed_executor_backend == "ray":
- initialize_ray_cluster(engine_config.parallel_config)
- from aphrodite.executor.ray_tpu_executor import (
- RayTPUExecutorAsync)
- executor_class = RayTPUExecutorAsync
- else:
- assert distributed_executor_backend is None
- from aphrodite.executor.tpu_executor import TPUExecutorAsync
- executor_class = TPUExecutorAsync
- elif engine_config.device_config.device_type == "cpu":
- from aphrodite.executor.cpu_executor import CPUExecutorAsync
- executor_class = CPUExecutorAsync
- elif engine_config.device_config.device_type == "openvino":
- assert distributed_executor_backend is None, (
- "Distributed execution is not supported with the OpenVINO "
- "backend.")
- from aphrodite.executor.openvino_executor import (
- OpenVINOExecutorAsync)
- executor_class = OpenVINOExecutorAsync
- elif engine_config.device_config.device_type == "xpu":
- if distributed_executor_backend is None:
- from aphrodite.executor.xpu_executor import XPUExecutorAsync
- executor_class = XPUExecutorAsync
- elif distributed_executor_backend == "ray":
- initialize_ray_cluster(engine_config.parallel_config)
- from aphrodite.executor.ray_xpu_executor import (
- RayXPUExecutorAsync)
- executor_class = RayXPUExecutorAsync
- else:
- raise RuntimeError(
- "Unsupported distributed executor backend for XPU.")
- elif distributed_executor_backend == "ray":
- initialize_ray_cluster(engine_config.parallel_config)
- from aphrodite.executor.ray_gpu_executor import RayGPUExecutorAsync
- executor_class = RayGPUExecutorAsync
- elif distributed_executor_backend == "mp":
- from aphrodite.executor.multiproc_gpu_executor import (
- MultiprocessingGPUExecutorAsync)
- executor_class = MultiprocessingGPUExecutorAsync
- else:
- from aphrodite.executor.gpu_executor import GPUExecutorAsync
- executor_class = GPUExecutorAsync
- return executor_class
- @classmethod
- def from_engine_args(
- cls,
- engine_args: AsyncEngineArgs,
- start_engine_loop: bool = True,
- stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
- ) -> "AsyncAphrodite":
- """Creates an async LLM engine from the engine arguments."""
- # Create the engine configs.
- engine_config = engine_args.create_engine_config()
- if engine_args.engine_use_ray:
- from aphrodite.executor import ray_utils
- ray_utils.assert_ray_available()
- executor_class = cls._get_executor_cls(engine_config)
- # Create the async LLM engine.
- engine = cls(
- executor_class.uses_ray,
- engine_args.engine_use_ray,
- **engine_config.to_dict(),
- executor_class=executor_class,
- log_requests=not engine_args.disable_log_requests,
- log_stats=not engine_args.disable_log_stats,
- start_engine_loop=start_engine_loop,
- stat_loggers=stat_loggers,
- )
- return engine
- @property
- def is_running(self) -> bool:
- return (self.background_loop is not None
- and self._background_loop_unshielded is not None
- and not self._background_loop_unshielded.done())
- @property
- def is_stopped(self) -> bool:
- return self.errored or (self.background_loop is not None and
- self._background_loop_unshielded is not None
- and self._background_loop_unshielded.done())
- @property
- def errored(self) -> bool:
- return self._errored_with is not None
- def set_errored(self, exc: Exception) -> None:
- self._errored_with = exc
- def _error_callback(self, exc: Exception) -> None:
- self.set_errored(exc)
- self._request_tracker.propagate_exception(exc)
- async def get_tokenizer(
- self,
- lora_request: Optional[LoRARequest] = None,
- ) -> "PreTrainedTokenizer":
- if self.engine_use_ray:
- return await self.engine.get_tokenizer.remote( # type: ignore
- lora_request)
- return await (self.engine.get_tokenizer_group().
- get_lora_tokenizer_async(lora_request))
- def start_background_loop(self) -> None:
- """Start the background loop."""
- if self.errored:
- raise AsyncEngineDeadError(
- "Background loop has errored already.") from self._errored_with
- if self.is_running:
- raise RuntimeError("Background loop is already running.")
- # Initialize the RequestTracker here so it uses the right event loop.
- self._request_tracker = RequestTracker()
- self._background_loop_unshielded = asyncio.get_event_loop(
- ).create_task(self.run_engine_loop())
- self._background_loop_unshielded.add_done_callback(
- partial(_log_task_completion, error_callback=self._error_callback))
- self.background_loop = asyncio.shield(self._background_loop_unshielded)
- def shutdown_background_loop(self) -> None:
- """
- Shut down the background loop.
- This method needs to be called during cleanup to remove
- references to `self` and properly GC the resources held
- by the async LLM engine (e.g., the executors as well as
- their resources).
- """
- if self._background_loop_unshielded is not None:
- self._background_loop_unshielded.cancel()
- self._background_loop_unshielded = None
- self.background_loop = None
- def _init_engine(self, *args,
- **kwargs) -> Union[_AsyncAphrodite, "ray.ObjectRef"]:
- if not self.engine_use_ray:
- engine_class = self._engine_class
- elif self.worker_use_ray:
- engine_class = ray.remote(num_cpus=0)(self._engine_class).remote
- else:
- # FIXME: This is a bit hacky. Be careful when changing the
- # order of the arguments.
- cache_config = kwargs["cache_config"]
- parallel_config = kwargs["parallel_config"]
- if (parallel_config.tensor_parallel_size == 1
- and parallel_config.pipeline_parallel_size == 1):
- num_gpus = cache_config.gpu_memory_utilization
- else:
- num_gpus = 1
- engine_class = ray.remote(num_gpus=num_gpus)(
- self._engine_class).remote
- return engine_class(*args, **kwargs)
- async def engine_step(self, virtual_engine: int) -> bool:
- """Kick the engine to process the waiting requests.
- Returns True if there are in-progress requests."""
- new_requests, aborted_requests = (
- self._request_tracker.get_new_and_aborted_requests())
- for new_request in new_requests:
- # Add the request into the Aphrodite engine's waiting queue.
- # TODO: Maybe add add_request_batch to reduce Ray overhead
- try:
- if self.engine_use_ray:
- await self.engine.add_request.remote( # type: ignore
- **new_request)
- else:
- await self.engine.add_request_async(**new_request)
- except ValueError as e:
- # TODO: use an Aphrodite specific error for failed validation
- self._request_tracker.process_exception(
- new_request["request_id"],
- e,
- verbose=self.log_requests,
- )
- if aborted_requests:
- await self._engine_abort(aborted_requests)
- if self.engine_use_ray:
- request_outputs = await self.engine.step.remote() # type: ignore
- else:
- request_outputs = await self.engine.step_async(virtual_engine)
- # Put the outputs into the corresponding streams.
- finished = True
- for request_output in request_outputs:
- self._request_tracker.process_request_output(
- request_output, verbose=self.log_requests)
- finished = finished and request_output.finished
- return not finished
- async def _engine_abort(self, request_ids: Iterable[str]):
- if self.engine_use_ray:
- await self.engine.abort_request.remote(request_ids) # type: ignore
- else:
- self.engine.abort_request(request_ids)
- async def run_engine_loop(self):
- if self.engine_use_ray:
- pipeline_parallel_size = 1 # type: ignore
- else:
- pipeline_parallel_size = \
- self.engine.parallel_config.pipeline_parallel_size
- has_requests_in_progress = [False] * pipeline_parallel_size
- while True:
- if not any(has_requests_in_progress):
- logger.debug("Waiting for new requests...")
- # Stop the execute model loop in parallel workers until there
- # are more requests to process. This avoids waiting
- # indefinitely in torch.distributed ops which may otherwise
- # timeout, and unblocks the RPC thread in the workers so that
- # they can process any other queued control plane messages,
- # such as add/remove lora adapters.
- if self.engine_use_ray:
- await (self.engine.stop_remote_worker_execution_loop.
- remote() # type: ignore
- )
- else:
- await self.engine.stop_remote_worker_execution_loop_async()
- await self._request_tracker.wait_for_new_requests()
- logger.debug("Got new requests!")
- requests_in_progress = [
- asyncio.create_task(self.engine_step(ve))
- for ve in range(pipeline_parallel_size)
- ]
- has_requests_in_progress = [True] * pipeline_parallel_size
- # Abort if iteration takes too long due to unrecoverable errors
- # (eg. NCCL timeouts).
- try:
- async with asyncio_timeout(ENGINE_ITERATION_TIMEOUT_S):
- done, _ = await asyncio.wait(
- requests_in_progress,
- return_when=asyncio.FIRST_COMPLETED)
- for _ in range(pipeline_parallel_size):
- await asyncio.sleep(0)
- for task in done:
- result = task.result()
- virtual_engine = requests_in_progress.index(task)
- if self.engine_use_ray:
- has_unfinished_requests = (
- await (self.engine.
- has_unfinished_requests_for_virtual_engine.
- remote( # type: ignore
- virtual_engine)))
- else:
- has_unfinished_requests = (
- self.engine.
- has_unfinished_requests_for_virtual_engine(
- virtual_engine))
- if result or has_unfinished_requests:
- requests_in_progress[virtual_engine] = (
- asyncio.create_task(
- self.engine_step(virtual_engine)))
- has_requests_in_progress[virtual_engine] = True
- else:
- has_requests_in_progress[virtual_engine] = False
- except asyncio.TimeoutError as exc:
- logger.error(
- "Engine iteration timed out. This should never happen!")
- self.set_errored(exc)
- raise
- await asyncio.sleep(0)
- # This method does not need to be async, but kept that way
- # for backwards compatibility.
- async def add_request(
- self,
- request_id: str,
- inputs: PromptInputs,
- params: Union[SamplingParams, PoolingParams],
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> AsyncGenerator[Union[RequestOutput, EmbeddingRequestOutput], None]:
- if not self.is_running:
- if self.start_engine_loop:
- self.start_background_loop()
- else:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- stream = self._request_tracker.add_request(
- request_id,
- verbose=self.log_requests,
- inputs=inputs,
- params=params,
- arrival_time=arrival_time or time.time(),
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request)
- return stream.generator()
- async def generate(
- self,
- inputs: PromptInputs,
- sampling_params: SamplingParams,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> AsyncGenerator[RequestOutput, None]:
- """Generate outputs for a request.
- Generate outputs for a request. This method is a coroutine. It adds the
- request into the waiting queue of the AphroditeEngine and streams the
- outputs from the AphroditeEngine to the caller.
- Args:
- prompt: The prompt string. Can be None if prompt_token_ids is
- provided.
- sampling_params: The sampling parameters of the request.
- request_id: The unique id of the request.
- prompt_token_ids: The token IDs of the prompt. If None, we
- use the tokenizer to convert the prompts to token IDs.
- lora_request: LoRA request to use for generation, if any.
- prompt_adapter_request: Prompt Adapter request to use
- for generation, if any.
- Yields:
- The output `RequestOutput` objects from the AphroditeEngine
- for the request.
- Details:
- - If the engine is not running, start the background loop,
- which iteratively invokes
- # pylint: disable=line-too-long
- :meth:`~aphrodite.engine.async_aphrodite.AsyncAphrodite.engine_step`
- to process the waiting requests.
- - Add the request to the engine's `RequestTracker`.
- On the next background loop, this request will be sent to
- the underlying engine.
- Also, a corresponding `AsyncStream` will be created.
- - Wait for the request outputs from `AsyncStream` and yield them.
- Example:
- >>> # Please refer to entrypoints/api_server.py for
- >>> # the complete example.
- >>>
- >>> # initialize the engine and the example input
- >>> engine = AsyncAphrodite.from_engine_args(engine_args)
- >>> example_input = {
- >>> "prompt": "What is LLM?",
- >>> "stream": False, # assume the non-streaming case
- >>> "temperature": 0.0,
- >>> "request_id": 0,
- >>> }
- >>>
- >>> # start the generation
- >>> results_generator = engine.generate(
- >>> example_input["prompt"],
- >>> SamplingParams(temperature=example_input["temperature"]),
- >>> example_input["request_id"])
- >>>
- >>> # get the results
- >>> final_output = None
- >>> async for request_output in results_generator:
- >>> if await request.is_disconnected():
- >>> # Abort the request if the client disconnects.
- >>> await engine.abort(request_id)
- >>> # Return or raise an error
- >>> ...
- >>> final_output = request_output
- >>>
- >>> # Process and return the final output
- >>> ...
- """
- async for output in await self.add_request(
- request_id,
- inputs,
- sampling_params,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- ):
- yield AphroditeEngine.validate_output(output, RequestOutput)
- async def encode(
- self,
- inputs: PromptInputs,
- pooling_params: PoolingParams,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- ) -> AsyncGenerator[EmbeddingRequestOutput, None]:
- """Generate outputs for a request from an embedding model.
- Generate outputs for a request. This method is a coroutine. It adds the
- request into the waiting queue of the AphroditeEngine and streams the
- outputs from the AphroditeEngine to the caller.
- Args:
- prompt: The prompt string. Can be None if prompt_token_ids is
- provided.
- pooling_params: The pooling parameters of the request.
- request_id: The unique id of the request.
- prompt_token_ids: The token IDs of the prompt. If None, we
- use the tokenizer to convert the prompts to token IDs.
- lora_request: LoRA request to use for generation, if any.
- multi_modal_data: Multi modal data per request.
- Yields:
- The output `EmbeddingRequestOutput` objects from the
- AphroditeEngine for the request.
- Details:
- - If the engine is not running, start the background loop,
- which iteratively invokes
- :meth:`~aphrodite.engine.async_aphrodite.AsyncAphrodite.engine_step`
- to process the waiting requests.
- - Add the request to the engine's `RequestTracker`.
- On the next background loop, this request will be sent to
- the underlying engine.
- Also, a corresponding `AsyncStream` will be created.
- - Wait for the request outputs from `AsyncStream` and yield them.
- Example:
- >>> # initialize the engine and the example input
- >>> engine = AsyncAphrodite.from_engine_args(engine_args)
- >>> example_input = {
- >>> "input": "What is LLM?",
- >>> "request_id": 0,
- >>> }
- >>>
- >>> # start the generation
- >>> results_generator = engine.encode(
- >>> example_input["input"],
- >>> PoolingParams(),
- >>> example_input["request_id"])
- >>>
- >>> # get the results
- >>> final_output = None
- >>> async for request_output in results_generator:
- >>> if await request.is_disconnected():
- >>> # Abort the request if the client disconnects.
- >>> await engine.abort(request_id)
- >>> # Return or raise an error
- >>> ...
- >>> final_output = request_output
- >>>
- >>> # Process and return the final output
- >>> ...
- """
- async for output in await self.add_request(
- request_id,
- inputs,
- pooling_params,
- lora_request=lora_request,
- ):
- yield AphroditeEngine.validate_output(output,
- EmbeddingRequestOutput)
- async def abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- if not self.is_running:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- return self._abort(request_id)
- def _abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- self._request_tracker.abort_request(request_id,
- exception=asyncio.CancelledError,
- verbose=self.log_requests)
- async def get_model_config(self) -> ModelConfig:
- """Get the model configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_model_config.remote() # type: ignore
- else:
- return self.engine.get_model_config()
- async def get_parallel_config(self) -> ParallelConfig:
- """Get the parallel configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_parallel_config.remote( # type: ignore
- )
- else:
- return self.engine.get_parallel_config()
- async def get_decoding_config(self) -> DecodingConfig:
- """Get the decoding configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_decoding_config.remote( # type: ignore
- )
- else:
- return self.engine.get_decoding_config()
- async def get_scheduler_config(self) -> SchedulerConfig:
- """Get the scheduling configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_scheduler_config.remote( # type: ignore
- )
- else:
- return self.engine.get_scheduler_config()
- async def get_lora_config(self) -> LoRAConfig:
- """Get the lora configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_lora_config.remote( # type: ignore
- )
- else:
- return self.engine.get_lora_config()
- async def do_log_stats(
- self,
- scheduler_outputs: Optional[SchedulerOutputs] = None,
- model_output: Optional[List[SamplerOutput]] = None) -> None:
- if self.engine_use_ray:
- await self.engine.do_log_stats.remote( # type: ignore
- scheduler_outputs, model_output)
- else:
- self.engine.do_log_stats()
- async def check_health(self) -> None:
- """Raises an error if engine is unhealthy."""
- t = time.perf_counter()
- logger.debug("Starting health check...")
- if self.is_stopped:
- raise AsyncEngineDeadError("Background loop is stopped.")
- if self.engine_use_ray:
- try:
- await self.engine.check_health.remote() # type: ignore
- except ray.exceptions.RayActorError as e:
- raise RuntimeError("Engine is dead.") from e
- else:
- await self.engine.check_health_async()
- logger.debug(f"Health check took {time.perf_counter()-t}s")
|