123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- """Compare the outputs of HF and distributed Aphrodite when using greedy
- sampling.
- Run:
- ```sh
- pytest test_chunked_prefill_distributed.py
- ```
- """
- import os
- import pytest
- from aphrodite.common.utils import cuda_device_count_stateless
- from ..models.utils import check_outputs_equal
- from ..utils import fork_new_process_for_each_test
- @pytest.mark.skipif(cuda_device_count_stateless() < 2,
- reason="Need at least 2 GPUs to run the test.")
- @pytest.mark.parametrize("model, distributed_executor_backend", [
- ("facebook/opt-125m", "ray"),
- ("meta-llama/Llama-2-7b-hf", "ray"),
- ("facebook/opt-125m", "mp"),
- ("meta-llama/Llama-2-7b-hf", "mp"),
- ])
- @fork_new_process_for_each_test
- def test_models(
- hf_runner,
- aphrodite_runner,
- example_prompts,
- model: str,
- distributed_executor_backend: str,
- ) -> None:
- if model == "meta-llama/Llama-2-7b-hf" and distributed_executor_backend == "ray": # noqa
- assert distributed_executor_backend == "ray"
- os.environ["APHRODITE_USE_RAY_SPMD_WORKER"] = "1"
- os.environ["APHRODITE_USE_RAY_COMPILED_DAG"] = "1"
- dtype = "half"
- max_tokens = 5
- chunked_prefill_token_size = 16
- # Add a chunked prefill config.
- max_num_seqs = min(chunked_prefill_token_size, 256)
- assert chunked_prefill_token_size != -1
- enable_chunked_prefill = True
- max_num_batched_tokens = chunked_prefill_token_size
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default method).
- with aphrodite_runner(
- model,
- dtype=dtype,
- tensor_parallel_size=2,
- max_num_seqs=max_num_seqs,
- enable_chunked_prefill=enable_chunked_prefill,
- max_num_batched_tokens=max_num_batched_tokens,
- distributed_executor_backend=distributed_executor_backend,
- ) as aphrodite_model:
- aphrodite_outputs = aphrodite_model.generate_greedy(
- example_prompts, max_tokens)
- with hf_runner(model, dtype=dtype) as hf_model:
- hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
- check_outputs_equal(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=aphrodite_outputs,
- name_0="hf",
- name_1="aphrodite",
- )
|