paligemma.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. from typing import Iterable, List, Literal, Optional, Tuple, TypedDict, Union
  2. import torch
  3. from loguru import logger
  4. from torch import nn
  5. from transformers import PaliGemmaConfig
  6. from aphrodite.attention import AttentionMetadata
  7. from aphrodite.common.config import CacheConfig, MultiModalConfig
  8. from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
  9. from aphrodite.common.utils import progress_bar
  10. from aphrodite.inputs import INPUT_REGISTRY, InputContext, LLMInputs
  11. from aphrodite.modeling.layers.logits_processor import LogitsProcessor
  12. from aphrodite.modeling.layers.sampler import Sampler
  13. from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
  14. from aphrodite.modeling.models.gemma import GemmaModel
  15. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  16. from aphrodite.multimodal import MULTIMODAL_REGISTRY
  17. from aphrodite.multimodal.image import cached_get_tokenizer
  18. from aphrodite.quantization.base_config import QuantizationConfig
  19. from .interfaces import SupportsMultiModal
  20. from .siglip import (SiglipVisionModel, dummy_image_for_siglip,
  21. dummy_seq_data_for_siglip, get_max_siglip_image_tokens)
  22. from .utils import merge_multimodal_embeddings
  23. _KEYS_TO_MODIFY_MAPPING = {
  24. "language_model.model": "language_model",
  25. }
  26. class PaliGemmaImagePixelInputs(TypedDict):
  27. type: Literal["pixel_values"]
  28. data: torch.Tensor
  29. """Shape: (batch_size, num_channels, height, width)"""
  30. class PaliGemmaImageEmbeddingInputs(TypedDict):
  31. type: Literal["image_embeds"]
  32. data: torch.Tensor
  33. """Shape: `(batch_size, image_feature_size, hidden_size)`
  34. `hidden_size` must match the hidden size of language model backbone.
  35. """
  36. PaliGemmaImageInputs = Union[PaliGemmaImagePixelInputs,
  37. PaliGemmaImageEmbeddingInputs]
  38. def get_max_paligemma_image_tokens(ctx: InputContext):
  39. hf_config = ctx.get_hf_config(PaliGemmaConfig)
  40. vision_config = hf_config.vision_config
  41. return get_max_siglip_image_tokens(vision_config)
  42. def dummy_data_for_paligemma(ctx: InputContext, seq_len: int):
  43. hf_config = ctx.get_hf_config(PaliGemmaConfig)
  44. vision_config = hf_config.vision_config
  45. seq_data = dummy_seq_data_for_siglip(
  46. vision_config,
  47. seq_len,
  48. image_token_id=hf_config.image_token_index,
  49. )
  50. mm_data = dummy_image_for_siglip(vision_config)
  51. return seq_data, mm_data
  52. def input_processor_for_paligemma(ctx: InputContext, llm_inputs: LLMInputs):
  53. """
  54. The correct prompt format needs to be:
  55. '<image>' * image_feature_size + '<bos>' + prompt + '\n'
  56. See https://github.com/huggingface/transformers/blob/25245ec26dc29bcf6102e1b4ddd0dfd02e720cf5/src/transformers/models/paligemma/processing_paligemma.py#L55
  57. """ # noqa
  58. multi_modal_data = llm_inputs.get("multi_modal_data")
  59. if multi_modal_data is None or "image" not in multi_modal_data:
  60. return llm_inputs
  61. model_config = ctx.model_config
  62. hf_config = ctx.get_hf_config(PaliGemmaConfig)
  63. tokenizer = cached_get_tokenizer(model_config.tokenizer)
  64. image_feature_size = hf_config.text_config.num_image_tokens
  65. image_token_str = tokenizer.decode(hf_config.image_token_index)
  66. bos_token = tokenizer.decode(hf_config.bos_token_id)
  67. image_token_str_pad = image_token_str * image_feature_size
  68. image_token_ids_pad = [hf_config.image_token_index] * image_feature_size
  69. orig_prompt = llm_inputs.get("prompt")
  70. orig_prompt_ids = llm_inputs.get("prompt_token_ids")
  71. if orig_prompt is not None and image_token_str in orig_prompt:
  72. logger.warning(
  73. f"The image token '{image_token_str}' was detected in the prompt "
  74. "and will be removed. Please follow the proper prompt format"
  75. " documented on HuggingFace.")
  76. orig_prompt = orig_prompt.replace(image_token_str, "")
  77. orig_prompt_ids.remove(hf_config.image_token_index)
  78. new_prompt = f"{image_token_str_pad}{bos_token}{orig_prompt}\n"
  79. new_token_ids = image_token_ids_pad + orig_prompt_ids + [108] #newline
  80. # NOTE: Create a defensive copy of the original inputs
  81. return LLMInputs(prompt_token_ids=new_token_ids,
  82. prompt=new_prompt,
  83. multi_modal_data=multi_modal_data)
  84. class PaliGemmaMultiModalProjector(nn.Module):
  85. def __init__(self, vision_hidden_size: int, projection_dim: int):
  86. super().__init__()
  87. self.linear = nn.Linear(vision_hidden_size, projection_dim, bias=True)
  88. def forward(self, image_features: torch.Tensor) -> torch.Tensor:
  89. hidden_states = self.linear(image_features)
  90. return hidden_states
  91. @MULTIMODAL_REGISTRY.register_image_input_mapper()
  92. @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_paligemma_image_tokens)
  93. @INPUT_REGISTRY.register_dummy_data(dummy_data_for_paligemma)
  94. @INPUT_REGISTRY.register_input_processor(input_processor_for_paligemma)
  95. class PaliGemmaForConditionalGeneration(nn.Module, SupportsMultiModal):
  96. def __init__(self,
  97. config: PaliGemmaConfig,
  98. multimodal_config: MultiModalConfig,
  99. cache_config: Optional[CacheConfig] = None,
  100. quant_config: Optional[QuantizationConfig] = None) -> None:
  101. super().__init__()
  102. self.config = config
  103. self.multimodal_config = multimodal_config
  104. # TODO: Port over SiglipVisionModel & TP
  105. self.vision_tower = SiglipVisionModel(config.vision_config)
  106. self.multi_modal_projector = PaliGemmaMultiModalProjector(
  107. vision_hidden_size=config.vision_config.hidden_size,
  108. projection_dim=config.vision_config.projection_dim)
  109. self.quant_config = quant_config
  110. self.language_model = GemmaModel(config.text_config, cache_config,
  111. quant_config)
  112. self.unpadded_vocab_size = config.text_config.vocab_size
  113. logit_scale = getattr(config, "logit_scale", 1.0)
  114. self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
  115. config.vocab_size, logit_scale)
  116. self.sampler = Sampler()
  117. def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
  118. h = w = self.config.vision_config.image_size
  119. expected_dims = (3, h, w)
  120. actual_dims = tuple(data.shape[1:])
  121. if actual_dims != expected_dims:
  122. expected_expr = ("batch_size", *map(str, expected_dims))
  123. raise ValueError(
  124. f"The expected shape of pixel values is {expected_expr}. "
  125. f"You supplied {tuple(data.shape)}.")
  126. return data
  127. def _parse_and_validate_image_input(
  128. self, **kwargs: object) -> Optional[PaliGemmaImageInputs]:
  129. pixel_values = kwargs.pop("pixel_values", None)
  130. image_embeds = kwargs.pop("image_embeds", None)
  131. if pixel_values is None and image_embeds is None:
  132. return None
  133. if pixel_values is not None:
  134. if not isinstance(pixel_values, torch.Tensor):
  135. raise ValueError("Incorrect type of pixel values. "
  136. f"Got type: {type(pixel_values)}")
  137. return PaliGemmaImagePixelInputs(
  138. type="pixel_values",
  139. data=self._validate_pixel_values(pixel_values),
  140. )
  141. if image_embeds is not None:
  142. if not isinstance(image_embeds, torch.Tensor):
  143. raise ValueError("Incorrect type of image embeddings. "
  144. f"Got type: {type(image_embeds)}")
  145. return PaliGemmaImageEmbeddingInputs(
  146. type="image_embeds",
  147. data=image_embeds,
  148. )
  149. raise AssertionError("This line should be unreachable.")
  150. def _image_pixels_to_features(
  151. self,
  152. vision_tower: SiglipVisionModel,
  153. pixel_values: torch.Tensor,
  154. ) -> torch.Tensor:
  155. target_dtype = vision_tower.get_input_embeddings().weight.dtype
  156. image_features = vision_tower(pixel_values.to(dtype=target_dtype))
  157. return image_features
  158. def _process_image_input(
  159. self,
  160. image_input: PaliGemmaImageInputs,
  161. ) -> torch.Tensor:
  162. if image_input["type"] == "image_embeds":
  163. return image_input["data"]
  164. assert self.vision_tower is not None
  165. pixel_values = image_input["data"]
  166. image_features = self._image_pixels_to_features(
  167. self.vision_tower,
  168. pixel_values,
  169. )
  170. return self.multi_modal_projector(image_features)
  171. def forward(self,
  172. input_ids: torch.Tensor,
  173. positions: torch.Tensor,
  174. kv_caches: List[torch.Tensor],
  175. attn_metadata: AttentionMetadata,
  176. intermediate_tensors: Optional[IntermediateTensors] = None,
  177. **kwargs: object) -> SamplerOutput:
  178. parsed_image_input = self._parse_and_validate_image_input(**kwargs)
  179. if parsed_image_input is not None:
  180. vision_embeddings = self._process_image_input(parsed_image_input)
  181. # https://github.com/huggingface/transformers/blob/main/src/transformers/models/paligemma/modeling_paligemma.py#L294 # noqa
  182. vision_embeddings = vision_embeddings * (self.config.hidden_size**
  183. -0.5)
  184. inputs_embeds = self.language_model.get_input_embeddings(input_ids)
  185. inputs_embeds = merge_multimodal_embeddings(
  186. input_ids, inputs_embeds, vision_embeddings,
  187. self.config.image_token_index)
  188. input_ids = None
  189. else:
  190. inputs_embeds = None
  191. hidden_states = self.language_model(input_ids,
  192. positions,
  193. kv_caches,
  194. attn_metadata,
  195. None,
  196. inputs_embeds=inputs_embeds)
  197. return hidden_states
  198. # Copied from vllm/modeling/models/gemma.py
  199. def compute_logits(
  200. self,
  201. hidden_states: torch.Tensor,
  202. sampling_metadata: SamplingMetadata,
  203. ) -> Optional[torch.Tensor]:
  204. logits = self.logits_processor(self.language_model.embed_tokens,
  205. hidden_states, sampling_metadata)
  206. return logits
  207. # Copied from vllm/modeling/models/gemma.py
  208. def sample(
  209. self,
  210. logits: torch.Tensor,
  211. sampling_metadata: SamplingMetadata,
  212. ) -> Optional[SamplerOutput]:
  213. next_tokens = self.sampler(logits, sampling_metadata)
  214. return next_tokens
  215. # Adapted from vllm/modeling/models/gemma.py
  216. def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
  217. stacked_params_mapping = [
  218. # (param_name, shard_name, shard_id)
  219. ("qkv_proj", "q_proj", "q"),
  220. ("qkv_proj", "k_proj", "k"),
  221. ("qkv_proj", "v_proj", "v"),
  222. ("gate_up_proj", "gate_proj", 0),
  223. ("gate_up_proj", "up_proj", 1),
  224. ]
  225. params_dict = dict(self.named_parameters())
  226. loaded_params = set()
  227. weights_list = list(weights)
  228. for name, loaded_weight in progress_bar(weights_list,
  229. desc="Loading modules..."):
  230. for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items():
  231. if key_to_modify in name:
  232. name = name.replace(key_to_modify, new_key)
  233. use_default_weight_loading = False
  234. if "vision" in name:
  235. if self.vision_tower is not None:
  236. # We only do sharding for language model and
  237. # not vision model for now.
  238. use_default_weight_loading = True
  239. else:
  240. for (param_name, shard_name,
  241. shard_id) in stacked_params_mapping:
  242. if shard_name not in name:
  243. continue
  244. name = name.replace(shard_name, param_name)
  245. # Skip loading extra bias for GPTQ models.
  246. if name.endswith(".bias") and name not in params_dict:
  247. continue
  248. param = params_dict[name]
  249. weight_loader = param.weight_loader
  250. weight_loader(param, loaded_weight, shard_id)
  251. break
  252. else:
  253. # lm_head is not used in vllm as it is tied with
  254. # embed_token. To prevent errors, skip loading
  255. # lm_head.weight.
  256. if "lm_head.weight" in name:
  257. continue
  258. # Skip loading extra bias for GPTQ models.
  259. if name.endswith(".bias") and name not in params_dict:
  260. continue
  261. use_default_weight_loading = True
  262. if use_default_weight_loading:
  263. param = params_dict[name]
  264. weight_loader = getattr(param, "weight_loader",
  265. default_weight_loader)
  266. weight_loader(param, loaded_weight)
  267. loaded_params.add(name)
  268. unloaded_params = params_dict.keys() - loaded_params
  269. if unloaded_params:
  270. logger.warning(
  271. "Some weights are not initialized from checkpoints: "
  272. f"{unloaded_params}")