123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only DeepseekV2 model."""
- from typing import Any, Dict, Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import PretrainedConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.common.utils import progress_bar
- from aphrodite.distributed import (get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.fused_moe import FusedMoE
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- MergedColumnParallelLinear,
- ReplicatedLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- class DeepseekV2MLP(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- intermediate_size: int,
- hidden_act: str,
- quant_config: Optional[QuantizationConfig] = None,
- reduce_results: bool = True,
- ) -> None:
- super().__init__()
- self.gate_up_proj = MergedColumnParallelLinear(
- hidden_size, [intermediate_size] * 2,
- bias=False,
- quant_config=quant_config)
- self.down_proj = RowParallelLinear(intermediate_size,
- hidden_size,
- bias=False,
- quant_config=quant_config,
- reduce_results=reduce_results)
- if hidden_act != "silu":
- raise ValueError(f"Unsupported activation: {hidden_act}. "
- "Only silu is supported for now.")
- self.act_fn = SiluAndMul()
- def forward(self, x):
- gate_up, _ = self.gate_up_proj(x)
- x = self.act_fn(gate_up)
- x, _ = self.down_proj(x)
- return x
- class DeepseekV2MoE(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.tp_size = get_tensor_model_parallel_world_size()
- self.routed_scaling_factor = config.routed_scaling_factor
- self.n_shared_experts = config.n_shared_experts
- self.routed_scaling_factor = config.routed_scaling_factor
- if self.tp_size > config.n_routed_experts:
- raise ValueError(
- f"Tensor parallel size {self.tp_size} is greater than "
- f"the number of experts {config.n_routed_experts}.")
- if config.hidden_act != "silu":
- raise ValueError(f"Unsupported activation: {config.hidden_act}. "
- "Only silu is supported for now.")
- self.experts = FusedMoE(num_experts=config.n_routed_experts,
- top_k=config.num_experts_per_tok,
- hidden_size=config.hidden_size,
- intermediate_size=config.moe_intermediate_size,
- reduce_results=False,
- renormalize=config.norm_topk_prob,
- quant_config=quant_config,
- use_grouped_topk=True,
- num_expert_group=config.n_group,
- topk_group=config.topk_group)
- self.gate = ReplicatedLinear(config.hidden_size,
- config.n_routed_experts,
- bias=False,
- quant_config=None)
- if config.n_shared_experts is not None:
- intermediate_size = (config.moe_intermediate_size *
- config.n_shared_experts)
- self.shared_experts = DeepseekV2MLP(
- hidden_size=config.hidden_size,
- intermediate_size=intermediate_size,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- reduce_results=False,
- )
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- num_tokens, hidden_dim = hidden_states.shape
- hidden_states = hidden_states.view(-1, hidden_dim)
- if self.n_shared_experts is not None:
- shared_output = self.shared_experts(hidden_states)
- # router_logits: (num_tokens, n_experts)
- router_logits, _ = self.gate(hidden_states)
- final_hidden_states = self.experts(
- hidden_states=hidden_states,
- router_logits=router_logits) * self.routed_scaling_factor
- if shared_output is not None:
- final_hidden_states = final_hidden_states + shared_output
- if self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(num_tokens, hidden_dim)
- def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
- import math
- if scale <= 1:
- return 1.0
- return 0.1 * mscale * math.log(scale) + 1.0
- class DeepseekV2Attention(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- hidden_size: int,
- num_heads: int,
- qk_nope_head_dim: int,
- qk_rope_head_dim: int,
- v_head_dim: int,
- q_lora_rank: int,
- kv_lora_rank: int,
- rope_theta: float = 10000,
- rope_scaling: Optional[Dict[str, Any]] = None,
- max_position_embeddings: int = 8192,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- layer_idx=None,
- ) -> None:
- super().__init__()
- self.layer_idx = layer_idx
- self.hidden_size = hidden_size
- self.qk_nope_head_dim = qk_nope_head_dim
- self.qk_rope_head_dim = qk_rope_head_dim
- self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
- self.v_head_dim = v_head_dim
- self.q_lora_rank = q_lora_rank
- self.kv_lora_rank = kv_lora_rank
- self.num_heads = num_heads
- tp_size = get_tensor_model_parallel_world_size()
- assert num_heads % tp_size == 0
- self.num_local_heads = num_heads // tp_size
- self.scaling = self.qk_head_dim**-0.5
- self.rope_theta = rope_theta
- self.max_position_embeddings = max_position_embeddings
- if self.q_lora_rank is not None:
- self.q_a_proj = ReplicatedLinear(self.hidden_size,
- self.q_lora_rank,
- bias=False,
- quant_config=quant_config)
- self.q_a_layernorm = RMSNorm(self.q_lora_rank,
- eps=config.rms_norm_eps)
- self.q_b_proj = ColumnParallelLinear(q_lora_rank,
- self.num_heads *
- self.qk_head_dim,
- bias=False,
- quant_config=quant_config)
- else:
- self.q_proj = ColumnParallelLinear(self.hidden_size,
- self.num_heads *
- self.qk_head_dim,
- bias=False,
- quant_config=quant_config)
- self.kv_a_proj_with_mqa = ReplicatedLinear(self.hidden_size,
- self.kv_lora_rank +
- self.qk_rope_head_dim,
- bias=False,
- quant_config=quant_config)
- self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
- eps=config.rms_norm_eps)
- self.kv_b_proj = ColumnParallelLinear(
- self.kv_lora_rank,
- self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
- bias=False,
- quant_config=quant_config)
- # O projection.
- self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
- self.hidden_size,
- bias=False,
- quant_config=quant_config)
- rope_scaling['type'] = 'deepseek_yarn'
- self.rotary_emb = get_rope(qk_rope_head_dim,
- rotary_dim=qk_rope_head_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- rope_scaling=rope_scaling,
- is_neox_style=False)
- if rope_scaling:
- mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
- scaling_factor = rope_scaling["factor"]
- mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
- self.scaling = self.scaling * mscale * mscale
- # self.attn = Attention(self.num_heads,
- # self.qk_head_dim,
- # self.scaling,
- # num_kv_heads=self.num_heads)
- # TODO, support head_size 192
- self.attn = Attention(self.num_local_heads,
- 256,
- self.scaling,
- num_kv_heads=self.num_local_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- if self.q_lora_rank is not None:
- q = self.q_a_proj(hidden_states)[0]
- q = self.q_a_layernorm(q)
- q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
- self.qk_head_dim)
- else:
- q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
- self.qk_head_dim)
- q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
- dim=-1)
- latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
- kv_a, _ = latent_cache.split(
- [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
- latent_cache = latent_cache.unsqueeze(1)
- kv_a = self.kv_a_layernorm(kv_a.contiguous())
- kv = self.kv_b_proj(kv_a)[0]
- kv = kv.view(-1, self.num_local_heads,
- self.qk_nope_head_dim + self.v_head_dim)
- k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
- k_pe = latent_cache[:, :, self.kv_lora_rank:]
- q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
- q[..., self.qk_nope_head_dim:] = q_pe
- k = torch.empty_like(q)
- k[..., :self.qk_nope_head_dim] = k_nope
- k[..., self.qk_nope_head_dim:] = k_pe
- q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
- value=0).view(-1,
- self.num_local_heads * 256)
- k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
- value=0).view(-1,
- self.num_local_heads * 256)
- v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
- value=0).view(-1,
- self.num_local_heads * 256)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- attn_output = attn_output.view(
- -1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
- -1, self.num_local_heads * self.v_head_dim)
- output, _ = self.o_proj(attn_output)
- return output
- class DeepseekV2DecoderLayer(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- layer_idx: int,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.hidden_size = config.hidden_size
- rope_theta = getattr(config, "rope_theta", 10000)
- rope_scaling = getattr(config, "rope_scaling", None)
- max_position_embeddings = getattr(config, "max_position_embeddings",
- 8192)
- self.self_attn = DeepseekV2Attention(
- config=config,
- hidden_size=self.hidden_size,
- num_heads=config.num_attention_heads,
- qk_nope_head_dim=config.qk_nope_head_dim,
- qk_rope_head_dim=config.qk_rope_head_dim,
- v_head_dim=config.v_head_dim,
- q_lora_rank=config.q_lora_rank
- if hasattr(config, "q_lora_rank") else None,
- kv_lora_rank=config.kv_lora_rank,
- rope_theta=rope_theta,
- rope_scaling=rope_scaling,
- max_position_embeddings=max_position_embeddings,
- cache_config=cache_config,
- quant_config=quant_config,
- layer_idx=layer_idx,
- )
- if (config.n_routed_experts is not None
- and layer_idx >= config.first_k_dense_replace
- and layer_idx % config.moe_layer_freq == 0):
- self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
- else:
- self.mlp = DeepseekV2MLP(
- hidden_size=config.hidden_size,
- intermediate_size=config.intermediate_size,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- )
- self.input_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.post_attention_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- residual: Optional[torch.Tensor],
- ) -> torch.Tensor:
- # Self Attention
- if residual is None:
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- else:
- hidden_states, residual = self.input_layernorm(
- hidden_states, residual)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- # Fully Connected
- hidden_states, residual = self.post_attention_layernorm(
- hidden_states, residual)
- hidden_states = self.mlp(hidden_states)
- return hidden_states, residual
- class DeepseekV2Model(nn.Module):
- fall_back_to_pt_during_load = False
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.padding_idx = config.pad_token_id
- self.vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(
- config.vocab_size,
- config.hidden_size,
- )
- self.layers = nn.ModuleList([
- DeepseekV2DecoderLayer(config,
- layer_idx,
- cache_config=cache_config,
- quant_config=quant_config)
- for layer_idx in range(config.num_hidden_layers)
- ])
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.embed_tokens(input_ids)
- residual = None
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states, residual = layer(positions, hidden_states,
- kv_caches[i], attn_metadata,
- residual)
- hidden_states, _ = self.norm(hidden_states, residual)
- return hidden_states
- class DeepseekV2ForCausalLM(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.model = DeepseekV2Model(config, cache_config, quant_config)
- self.lm_head = ParallelLMHead(config.vocab_size,
- config.hidden_size,
- quant_config=quant_config)
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.model(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: Optional[torch.Tensor],
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("gate_up_proj", "gate_proj", 0),
- ("gate_up_proj", "up_proj", 1),
- ]
- # Params for weights, fp8 weight scales, fp8 activation scales
- # (param_name, weight_name, expert_id, shard_id)
- expert_params_mapping = FusedMoE.make_expert_params_mapping(
- ckpt_gate_proj_name="gate_proj",
- ckpt_down_proj_name="down_proj",
- ckpt_up_proj_name="up_proj",
- num_experts=self.config.n_routed_experts)
- params_dict = dict(self.named_parameters())
- weights_list = list(weights)
- for name, loaded_weight in progress_bar(weights_list,
- desc="Loading modules..."):
- if "rotary_emb.inv_freq" in name:
- continue
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- # Skip non-stacked layers and experts (experts handled below).
- if weight_name not in name:
- continue
- # We have mlp.experts[0].gate_proj in the checkpoint.
- # Since we handle the experts below in expert_params_mapping,
- # we need to skip here BEFORE we update the name, otherwise
- # name will be updated to mlp.experts[0].gate_up_proj, which
- # will then be updated below in expert_params_mapping
- # for mlp.experts[0].gate_gate_up_proj, which breaks load.
- if (("mlp.experts." in name) and name not in params_dict):
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- for mapping in expert_params_mapping:
- param_name, weight_name, expert_id, shard_id = mapping
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param,
- loaded_weight,
- weight_name,
- shard_id=shard_id,
- expert_id=expert_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|